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Abstract

While prediction errors (PE) have been established to drive learning through adaptation of

internal models, the role of model-compliant events in predictive processing is less clear.

Checkpoints (CP) were recently introduced as points in time where expected sensory input

resolved ambiguity regarding the validity of the internal model. Conceivably, these events

serve as on-line reference points for model evaluation, particularly in uncertain contexts.

Evidence from fMRI has shown functional similarities of CP and PE to be independent of

event-related surprise, raising the important question of how these event classes relate to

one another. Consequently, the aim of the present study was to characterise the functional

relationship of checkpoints and prediction errors in a serial pattern detection task using

electroencephalography (EEG). Specifically, we first hypothesised a joint P3b component of

both event classes to index recourse to the internal model (compared to non-informative

standards, STD). Second, we assumed the mismatch signal of PE to be reflected in an

N400 component when compared to CP. Event-related findings supported these hypothe-

ses. We suggest that while model adaptation is instigated by prediction errors, checkpoints

are similarly used for model evaluation. Intriguingly, behavioural subgroup analyses showed

that the exploitation of potentially informative reference points may depend on initial cue

learning: Strict reliance on cue-based predictions may result in less attentive processing of

these reference points, thus impeding upregulation of response gain that would prompt flexi-

ble model adaptation. Overall, present results highlight the role of checkpoints as model-

compliant, informative reference points and stimulate important research questions about

their processing as function of learning und uncertainty.

Introduction

Predicting upcoming events constitutes one of the fundamental qualities of brain function.

Based on internal models shaped by previous experience, top-down predictions are compared

to bottom-up sensory signals [1]. Redundant components of perceptual information are disre-

garded whereas surprising expectancy violations are propagated upward in the processing
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hierarchy [2–3]. Model adaptation in consequence of such prediction errors (PE) has been

proposed to be the foundation of associative learning mechanisms [4–5], as unexpected events

are particularly informative with regard to their current context. Importantly, probabilistically

occurring expected events have also been suggested to inform the internal model [6]: While PE

instigate model adaptation, expected events verify model-based predictions. These verifica-

tions are particularly informative when we face uncertain environments. A recent fMRI study

[7] found that in uncertain environments, so-called checkpoints (CP) emerged as points in

time where distinctive processing of expected events pointed to a context-sensitive adaptation

in predictive processing. While the entire stimulus sequence could be predicted reliably in sta-

ble environments, unstable environments prompted stepwise predictions. This way, CP were

used to verify the internal model in order to predict the next section accordingly. Thus, while

model adaptation is induced by prediction errors, context-dependent model evaluation does

not seem to require expectancy violations. Instead, selected time points carry information

about the on-line validity of the internal model, raising the intriguing question of how check-

points and prediction errors functionally relate to one another.

For the present study, we employed the paradigm from [7] in an electroencephalography

(EEG) experiment. Exploiting the temporal benefits of EEG, we aimed to further understand

the functional relationship of CP and PE as well as their respective evolution over time. Specifi-

cally, we aimed to show how functional commonalities of and central distinctions between the

two event types translate to electrophysiological signals.

Participants performed a serial pattern detection task in which they were asked to press and

hold a response button whenever they detected a short or long ordered digit sequence (e.g. 1-

2-3-4-5, length of either 5 or 7 items) within an otherwise pseudorandom stream of coloured

single digits. Expectable sequence length was cued by digit colour and occasionally violated by

premature terminations or unexpected extensions. In addition to these two types of prediction

errors, checkpoints were defined as sequential positions where PE could potentially occur, but
did not. Thus, although checkpoints were exclusively sampled from regular events consistent

with the previous cue, their occurrence was probabilistically modulated by blockwise manipu-

lation of irreducible uncertainty. Irreducible uncertainty refers to uncertainty that cannot be

reduced further and remains even after successful (i.e., ideal) learning [8–9]. Going back to

our research question, both checkpoints and prediction errors provide central information for

model evaluation or adaptation, respectively, whereas deterministic standard trials (STD) did

neither. Consequently, we first hypothesised a joint event-related (ERP) component of CP and

PE (compared to STD) reflecting recourse to the internal model. The P3b component has been

conclusively shown to co-vary with subjective improbability or unexpectedness of a stimulus

[10–12]. Such highly informative events supposedly initiate contextual updating [13–14] or

memory-based revision of mental representations [15]. Importantly, the P3b is elicited by

behaviourally relevant rather than merely deviant stimuli in order to facilitate motor responses

[16–17], making it a promising candidate for a joint physiological component of checkpoints

and prediction errors.

Aside from the aforementioned conceptual commonalities of CP and PE, one critical dis-

tinction remains, namely the mismatch signal that is intrinsic to prediction errors. N400 is

elicited by a multitude of sensory events and its amplitude is known to scale with event sur-

prise in language [18–19], recognition memory (reviewed in [20]), and arithmetic tasks [21–

22], presumably marking modality-independent integration of incongruous information.

More generally, N400 has been discussed as a modality-independent index of representations

needing revision in light of expectancy violations (for review, see [11]). Consequently, we

hypothesised an enhanced N400 component for highly surprising, model-incongruent PE to

reflect this mismatch signal in contrast to expectation-compliant CP: While information from
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both event types has to be integrated into existing model structures, the excess effort of inte-

grating prediction error information should result in a more pronounced N400 component.

Complementing ERP analyses, we assessed topographic microstates [23] for a multivariate,

assumption-free comparison of the temporal dynamics underlying CP and PE processing.

This way, we aimed to characterise the two event classes using similarities and differences in

the onset, duration, and strength of their respective network activation.

Finally, we employed performance-based subgroup analyses of behavioural data to further

assess the implications of statistical learning on individual reaction time patterns. Specifically,

we hypothesised strong reliance on cue information to induce both beneficial and maladaptive

responses towards CP and PE, respectively.

Materials and methods

The study was conducted according to the principles expressed in the declaration of Helsinki

and approved by the Local Ethics Committee of the University of Münster (Department of

Psychology).

Participants

A total of 32 neurologically healthy, right-handed volunteers (26 female) at the age of

23.4 ± 2.5 years (M ± SD) participated in the study for payment or course credit. Participants

were recruited from the university’s volunteer database and had (corrected-to-) normal vision.

Written informed consent was obtained from all participants prior to the start of experimental

procedures. One participant was excluded from further data analysis due to poor behavioural

performance during the experiment; a second participant was excluded due to technical diffi-

culties during the EEG session. Therefore, all reported analyses are based on a sample of 30

participants (25 female, age 23.2 ± 2.5 years).

Stimulus material

Task and stimulus material of the present study were adopted from a previous fMRI study con-

ducted in our lab [7]. In short, participants were shown pseudorandomly coloured single digits

presented for 500 ms in the centre of a light grey computer screen (see Fig 1A). Presentation

frequencies for all colours and digits were equally distributed both within and across blocks of

approximately 6 minutes. Each block contained ordered sequences increasing the previous

digit by one (e.g. 1–2–3–4–5; Fig 1A, left) embedded in random trials with no discernible rela-

tion between consecutive digits. In order to balance sequential starting points across digits, the

ascending regularity necessarily included the 0 character and continued in a circular fashion

after the figure 9 (e.g. 8–9–0–1–2).

Undisclosed to the participants, two colours were exclusively used as cues (fixed validity p =

.80) to indicate the start of ordered sequences: one colour marked the first digit of a short
ordered sequence (regular length of five digits), a second colour marked the first digit of a long
ordered sequence (regular length of seven digits). Each participant was assigned two individual

cue colours from distinct hues.

Prediction errors, i.e. violations of cue-based expectations with regard to sequence length,

were induced by manipulation of the sequences’ expectation compliance. While the cues indi-

cated the length of regular ordered sequences (e.g. seven digits for long ordered sequences),

terminated sequences were shortened by two items. Conversely, extended sequences were pro-

longed by two items (Fig 1C). In addition to prediction errors, checkpoints were defined as

events of interest for subsequent analyses. In line with the design of our previous study [7],

checkpoints were sampled from positions of potential terminations and extensions, when
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expected stimuli were in fact presented (see Fig 1B). Finally, the composition of regular, termi-

nated, and extended sequences within a particular block was varied across blocks. This way,

the irreducible uncertainty of a block was set to be either low or high (Fig 1D). Low uncertainty

blocks could be seen as statistically stable regarding cue-based expectations whereas highly

uncertain blocks formed a more unstable statistical structure. The experiment was

Fig 1. (A) Exemplary trial succession and time frame of the corresponding response for ordered sequences. Sequential trials have been highlighted for illustrative

purposes. (B) Schematic structure of a short ordered sequence showing the positions of checkpoints (CP) and prediction errors (PE, red). At the fourth position, the

sequence could either be terminated (PE) or continued as expected (CP). Similarly, the sixth position contained either the regular end (CP) or an unexpected extension

of the sequence (PE). (C) Cue-based expected sequence length and resulting prediction errors for terminated and extended short ordered sequences (expectation
compliance). (D) Local transition probabilities for terminated, regular, and extended sequences depending on the respective level of irreducible uncertainty.

https://doi.org/10.1371/journal.pone.0218311.g001
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programmed and run using the Presentation 14.9 software (Neurobehavioral Systems, San

Francisco, CA, USA).

Task

Participants were instructed to press and hold the left button of a response box with their right

index finger as soon as they noticed an ordered sequence. Release of the button was to indicate

the end of the ordered sequence.

Experimental procedures

The study was conducted on two consecutive days. On the first day, participants completed a

training session to familiarise themselves with the task and to provide them with implicit

knowledge of the cues and the underlying statistical structure of the experiment. The training

consisted of two blocks (one block of low and high uncertainty, respectively) with a total dura-

tion of approximately 12 minutes. Importantly, at no point during the training or the EEG ses-

sion was it revealed that there was informational content in some of the colours (i.e. the cues)

or that the blocks varied in their respective statistical structure (i.e. their level of uncertainty).

The second day included the EEG session as well as a subsequent post-measurement. The

EEG session consisted of eight blocks (four blocks of each uncertainty level) with a total dura-

tion of approximately 48 minutes. Detailed information on trial numbers per block and condi-

tion is provided in Supporting Information (S1 Table). Participants were sitting comfortably

on a chair in a darkened, sound-dampened and electrically shielded EEG booth. They were

instructed to avoid blinking the best they could, most importantly during button presses.

Experimental procedure and task during the EEG session were otherwise identical to the train-

ing session.

Following the EEG session, participants completed a behavioural post-measurement in

order to assess their implicit knowledge of the cue information. To this end, they were shown

one final experimental block (duration approx. 5 min) on a computer outside the EEG booth,

performing the identical task as before. Crucially, only half of the ordered sequences were cued

by the colours learned during the training and the EEG session. The other half began with

fixed but different colours that had indeed been presented during training and EEG, but not as

cues for the respective participant. Therefore, these colours were non-informative in that they

contained no implicitly learned information concerning upcoming trials. In a verbal interview

following the post-measurement, all participants denied having noticed any colour-related

regularity.

Behavioural data analysis

Statistical analyses of behavioural responses were performed in R (R Foundation for Statistical

Computing, Vienna, Austria). First, correct and incorrect responses were aggregated sepa-

rately for training, EEG session, and post-measurement for each participant. Incorrect

responses were further divided into misses (no response over the course of a sequence) and

false alarms (response occurring without presentation of sequential trials). Participants’ overall

performances were assessed via the discrimination index PR [24].

Reaction times for button presses and releases were assessed for the EEG session and post-

measurement. Onset latency was calculated as reaction time relative to the onset of the second

trial of any particular ordered sequence (i.e. the earliest possible point to detect a sequential

pattern). Offset latency was calculated as reaction time relative to the onset of the first random

trial after a particular sequence. Reaction times occurring either before the cue trial (i.e. earlier

than -500 ms) or more than 2000 ms after the end of the sequence were excluded.

Model-compliant events in predictive processing
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We used a repeated-measures analysis of variance (ANOVA) to assess potential differences

in offset latency as a function of expectation compliance and uncertainty during the EEG ses-

sion. Furthermore, effects of cue learning on onset latency during the post-measurement were

assessed by means of a paired t-test (learned vs new cue colours). Finally, a data-driven sub-

group analysis based on participants’ post-test performance was conducted to assess differential

effects of stimulus surprise on response patterns as well as premature and anticipatory button

releases as a function of cue learning. Where appropriate, results of paired t-tests were corrected

for multiple comparisons at p = .05 using the false discovery rate (fdr) correction [25].

Single-trial analyses: Event-specific surprise

In addition to global context effects of uncertainty, single-trial behavioural and physiological

correlates of CP and PE conceivably depend on how much information is carried by respective

stimuli. For single-trial analyses of reaction times and ERPs, we modelled event-specific sur-

prise following the notion of an ideal Bayesian observer (see [26]). Surprise I(xi) was defined as

the improbability of event xi, i.e.

IðxiÞ ¼ � lnpðxiÞ

with

p xið Þ ¼
nij þ 1
P

knik þ 1

where nij denotes the total number of occurrences of outcome j (terminated, regular, extended)

up to the current observation i relative to the sum of all past observations (with k for all possi-

ble outcomes).

EEG data analysis

EEG data acquisition and data preprocessing. Scalp EEG was recorded from 62 Ag/

AgCl-electrodes mounted in a BrainCap TMS electrode cap (Brain Products, Gilching, Ger-

many) using the BrainVision Recorder software (Brain Products, Gilching, Germany). All

scalp channels were measured against a ground electrode at position FPz and referenced

against FCz during recording. Two additional electrooculogram (EOG) electrodes were

applied above and below the right eye for the detection of horizontal and vertical eye move-

ments. All impedances were kept below 10 kOhm. EEG was recorded at a sampling rate of 1

kHz with recording filters set to 0.1–1000 Hz bandpass.

EEG preprocessing was conducted in EEGLAB [27]. Data segments containing experimen-

tal breaks were discarded prior to independent component analysis (ICA). Resulting compo-

nents distinctly reflecting eye movements were subsequently rejected manually (mean = 2.83

components) using the SASICA toolbox [28]. Data were then filtered with a 0.1 Hz low cut

and 30 Hz high cut filter and recalculated to common average reference. Based on participants’

overall pattern of reaction times at the end of sequences, a time frame of [–100, 600] ms was

defined for the analysis of event-related potentials (ERP) and multivariate segmentation.

Epochs containing artefacts were discarded by semiautomatic inspection with an allowed max-

imum/minimum amplitude of ± 200 μV and voltage steps no higher than 50 μV per sampling.

Channels with a high proportion of outliers (kurtosis criterion: z> 6) were replaced by a linear

interpolation of their neighbour electrodes (M = 1.8 interpolated channels).

Event-related potentials. Averages of the epochs representing our events of interest were

calculated separately for each participant. Prediction errors were defined as violations of cue-
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based expectations of sequence length. For terminations, the event onset was time-locked to

the first unexpected random digit, whereas extensions were defined with the onset time-locked

to the first unexpected sequential digit. Checkpoints were defined as positions of potential

expectation violations when an expected stimulus was in fact presented. At these points in

time, based on a previous study [7], we hypothesised an incoming regular (i.e., expected) stim-

ulus to be checked for either a termination (i.e. a check occurring during the ongoing

sequence) or an extension (i.e. a check at the regular end) of the ordered sequence. Due to

their unambiguous characteristic and temporal distinctiveness, digits at the fourth position of

every long extended sequence were defined as sequential standard trials. The number of valid

trials per condition (after artefact rejection) is summarised in Supporting Information (S2

Table). Finally, grand averages across participants were calculated for all events of interest.

Using the Mass Univariate ERP Toolbox [29], we employed a two-stage approach to assess

reliable ERP differences between conditions: First, we restricted our analyses to specific time

frames and electrodes for stringent testing of our hypotheses. In a second step, we performed a

whole-brain analysis including all time points to increase sensitivity. In each case, ERPs from

the respective conditions were submitted to a repeated measures cluster mass permutation test

[30] using a family-wise significance level of α = .05. Repeated measures t-tests were performed

for each comparison using the original data and 5000 random within-participant permutations

of the data. For each permutation, all t-scores corresponding to uncorrected p-values of p = .05

or less were formed into clusters. The sum of the t-scores in each cluster defined the "mass" of

that cluster and the most extreme cluster mass in each of the 5001 sets of tests was used to esti-

mate the distribution of the null hypothesis.

To recap, ERP analyses were conducted to highlight functional commonalities of and dis-

tinctions between checkpoints and prediction errors. To this end, both CP and PE were first

compared to non-informative standard trials (STD) within the P3b time window (300–600

ms). In line with our hypotheses, differential correlates of prediction errors and checkpoints

were finally assessed in a direct comparison within the N400 time frame (300–500 ms).

Multivariate segmentation. We used the Cartool software package (available via www.

sites.google.com/site/cartoolcommunity) for a segmentation of event-related EEG data sets

into topographic maps. This procedure was first introduced by Lehmann and colleagues [23]

to describe what they termed functional microstates, meaning brief time periods of stability in

otherwise fluctuating field configurations. More generally, this segmentation allows the assess-

ment of spatial field characteristics and their temporal dynamics (see [31]. As these topo-

graphic ERP analyses consider information from all electrodes (i.e. the field configuration as a

whole), they offer a multivariate approach to investigating effects between time periods or

experimental conditions without a priori selection.

The methodology behind topographic ERP analyses has been described in great detail (see

[32] for an excellent step-by-step tutorial) and is briefly outlined here. Based on the so-called

AAHC (atomize and agglomerate hierarchical clustering) algorithm, Cartool first iteratively

generated clusters of ERP topographies to identify template maps separately for each experi-

mental condition. A cross-validation criterion was then used to determine which number of

template maps optimally described the group-averaged ERPs (i.e. how many template maps

were needed to maximise explained variance in the data). Finally, the optimal number of clus-

ter maps per experimental condition was fitted back to the original data, allowing us to com-

pare onset and duration of the same template maps across conditions.

Multivariate segmentation analysis was conducted to assess the number and topographic

distribution of template maps underlying ERPs of checkpoints, prediction errors, and standard

trials as well as differences in their timing and/or field power across conditions.

Model-compliant events in predictive processing

PLOS ONE | https://doi.org/10.1371/journal.pone.0218311 June 13, 2019 7 / 22

http://www.sites.google.com/site/cartoolcommunity
http://www.sites.google.com/site/cartoolcommunity
https://doi.org/10.1371/journal.pone.0218311


Results

Behavioural results

EEG session. All participants showed an overall high level of performance with a mean

PR score of MPR = 0.90 (SD = 0.06) during the EEG session, indicating good attentiveness

throughout the experiment. Mean PR scores did not differ significantly between experimental

blocks (F(7, 248) = 0.03, p = .999) or as a function of block uncertainty (t(29) = 1.58, p = .139,

see Fig 2A).

The repeated-measures ANOVA yielded a significant main effect of expectation compliance

on offset latency (F(2, 58) = 51.54, p< .001). Post-hoc pairwise t-tests revealed participants’

button releases to be significantly slower after terminated (M = 619.48 ms, SD = 96.55 ms)

than after regular (M = 532.81 ms, SD = 99.74 ms, fdr-adjusted p = .003) as well as after

extended sequences (M = 346.68 ms, SD = 219.35 ms, fdr-adjusted p< .001). The difference

between extended and regular sequences was significant as well (fdr-adjusted p< .001, see Fig

2B). This pattern of offset latencies fully replicated the findings from our previous fMRI study

(see [7]). Neither the main effect of uncertainty (F(1, 29) = 0.05, p = .821) nor the interaction

term of uncertainty X expectation compliance (F(2, 58) = 1.72, p = .187) reached statistical sig-

nificance, suggesting that participants were able to discriminate regular from manipulated

sequences regardless of the respective uncertainty level. The number of misses (t(29) = -1.89,

p = .068) and false alarms (t(29) = 0.10, p = .923) did not differ significantly between high and

low uncertainty blocks (see Fig 2A).

Post-measurement. Participants performed equally well during the post-measurement

(MPR = .90, SD = 0.05) as they had during the EEG session. The post-measurement was con-

ducted in order to assess cue learning: If participants had learned the association of cue colours

and prospective ordered sequences over the course of the training and the EEG session, they

could be expected to respond more quickly to sequences beginning with established cue col-

ours than to those starting with new colours during the post-measurement. Indeed, the cor-

responding t-test confirmed a significant difference between learned and new cue colours

(t(29) = -2.47, p = .01, one-tailed): Participants exhibited a shorter reaction time to learned cue

colours (M = 788.02 ms, SD = 168.00 ms) than to new cue colours just introduced during the

post-measurement (M = 844.59 ms, SD = 172.31 ms; see Fig 2B).

Performance-based subgroup analyses. Based on participants’ reaction times at onset

during the post-measurement, the sample was median-split into two equal groups (n = 15):

Fig 2. (A) Mean count of false alarms (FA) and misses per block as well as mean PR score as a function of uncertainty. (B) Mean offset latencies for terminated, regular,

and extended sequences as well as mean onset latencies for learned and new cue colours during post-measurement. �� = p< .01, ��� = p< .001.

https://doi.org/10.1371/journal.pone.0218311.g002
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The first group had shown a gain in response speed following the learned cue colours (gain),

whereas the second group had not (no gain, see Fig 3A). The gain group showed a significantly

higher difference between reactions to new and learned cue colours (M = 178.54 ms, SD =

106.62 ms) than did the no gain group (M = -45.40 ms, SD = 82.24 ms, t(26.64) = 6.29, p<
.001, one-sided).

The rationale behind comparing the two subgroups’ behavioural performance was that a

stronger association of cue colour and sequence length (as reflected by a pronounced gain in

response speed during post-measurement) should entail distinct response patterns at the end

of regular and manipulated sequences. We repeated the offset latency ANOVA separately for

gain and no gain groups and found the overall main effect of expectation compliance to be

present in both groups (gain: F(2, 28) = 30.15, p< .001; no gain: F(2, 28) = 28.23, p< .001; see

Fig 3B). Notably, only the gain group showed a significant interaction of expectation compli-

ance and irreducible uncertainty (F(2, 28) = 7.98, p = .002): Button releases at the end of

extended sequences occurred significantly earlier when uncertainty was low (M = 221.16 ms,

SD = 328.87 ms) than when it was high (M = 333.75 ms, SD = 252.23 ms, t(14) = 2.90, p =

.012).

By definition, extensions were on average more surprising under low uncertainty due to

their low presentation rate in these blocks. Importantly, however, event-specific surprise values

of extensions also fluctuated under high uncertainty (albeit to a lesser extent). Thus, the

reported uncertainty effect on the gain group’s responses after extended sequences might be

generalised across uncertainty levels in such a way that more surprising extensions–regardless

of global contextual features–evoked shorter offset latencies in the gain group: If excess

Fig 3. (A) Individual gains in reaction time (defined as the difference in reaction time following new minus learned cues) during post-measurement.

Positive values indicate quicker button presses following learned cues. Blue dotted line depicts MdnDiff = 78.70 ms. Participants were consequently

median-split into a gain group (blue) and a no gain group (red). (B) Upper panel: Mean offset latencies as a function of expectation compliance for gain

(blue) and no gain group (red). Significant differences only shown for high vs low uncertainty for the sake of clarity (see Fig 2B for differences between

levels of expectation compliance). Lower panel: Correlations between offset latency and trial-specific surprise value of sequential extensions for both

groups. �� = p< .01.

https://doi.org/10.1371/journal.pone.0218311.g003
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reliance on cue information had in fact determined the behavioural effect found for the gain

group, these participants should have responded equally fast to locally surprising extensions

irrespective of global uncertainty. Corroborating this hypothesis, we found a significant nega-

tive correlation of stimulus-bound surprise and offset latency after extended sequences for the

gain group (r(72) = —.29, p = .013) but not for the no gain group (r(72) = .06, p = .617). The

difference between the two correlation coefficients was found to be significant (Z = 2.11, p =

.017, one-tailed).

An intuitive explanation for earlier releases following highly surprising extensions would be

that the gain group not only released the button more quickly, but also more often prema-

turely: Conceivably, the more stable the cue information had been learned, the more likely

would the response button be released at the expected sequence end rather than at the actual

end. We assessed two additional questions with regard to more specific distinctions in behav-

iour: First, we hypothesised the gain group to more frequently respond prematurely to

extended sequences, i.e. at the ‘would-be’ end of the sequence had it not been extended (see

Fig 1B). Recall that unexpected extensions occurred at the sequential positions where–based

on the cue information–a non-sequential digit was expected. Accordingly, as illustrated in Fig

4, we compared the two groups’ button releases within the interval of -1000 (onset of the unex-

pected sequential digit) and 500 ms (offset of the first non-sequential digit) around the end of

extended sequences. Supporting our hypothesis, the gain group was found to have a signifi-

cantly higher number of releases within the [–1000, 500] ms time frame than the no gain

group (t(15) = 22.28, p< .001, one-sided; see Fig 4A). The group difference in incremental

releases per 100 ms window was also found to be significant (t(15) = 2.35, p = .017, one-sided).

Second, stronger expectations by means of more accessible cue information within the gain

group could conceivably lead to a similar pattern of early responses following regular

sequences. The gain group could therefore be expected to more frequently release the response

button within a brief interval of ± 500 ms around the end of regular sequences. Responses dur-

ing the last sequential digit (i.e. offset latency between -500 and 0 ms) would reflect an antici-

patory release of the response button whereas responses during the first non-sequential digit

(0–500 ms) would reflect a quick detection of the sequence end. Both anticipatory and quick

releases after the end of a regular sequence were hypothesised to be positively associated with

the degree to which the colour-length association had been learned. Fittingly, the gain group

was found to have a significantly higher number of releases within the ± 500 ms time frame

than the no gain group (t(10) = 9.47, p< .001, one-sided; see Fig 4B). The group difference in

incremental releases per 100 ms window showed a non-significant trend (t(10) = 1.81, p = .05,

one-sided).

EEG results

Event-related potentials. Based on our hypotheses, we first tested prediction errors and

sequential standards for reliable differences in the P300 time frame. We analysed all time

points between 300 and 600 ms (1350 comparisons in total) from two subsets of electrodes:

one parieto-central subset (CP1, CPz, CP2, P1, Pz, P2) to detect a posterior P3b component

and a fronto-central subset (F1, Fz, F2) controlling for anterior P3a effects (see [15] for a

review of P3a and P3b topographies). Supporting our hypothesis, we found a significant P3b

over the parieto-central electrodes (352–576 ms) peaking around 388 ms (Fig 5A). No signifi-

cant potentials were found in the fronto-central subset.

Subsequently, all time points between 0 and 600 ms were included in a two-sided whole-

brain analysis to assess reliable differences exceeding our hypotheses (18600 comparisons in

total). In addition to the reported P3b effect (see S1 Fig for comparison), we found a significant
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ERP component resembling a P600 with a right-lateralised parietal scalp distribution peaking

around 500 ms (Fig 5A). While timing, scalp distribution, and the underlying experimental

manipulation are fitting for a P600 component, the reported effect is caused at least in part by

a more pronounced negativity of STD (instead of a PE-related positivity). We therefore refrain

from interpreting this finding and suggest future studies specifically address P600 modulation

as a function of local probabilities.

Like prediction errors, checkpoints are probabilistic, highly informative sequential posi-

tions with an immediate relevance for behaviour. Therefore, one would expect a certain degree

of similarity between PE and checkpoint ERPs when compared with deterministic, behaviou-

rally non-informative standard trials. ERPs from checkpoints and sequential standards were

submitted to a one-sided analysis including all time points between 300 and 600 ms (1350

comparisons in total) and the two electrode clusters described above. The analysis revealed a

Fig 4. (A) Mean count of button releases during the experiment up to selected offset latencies for gain (blue) and no gain group (red). Shown here for an exemplary

short extended sequence (length of 7 digits), the gain group was found to release the response button more frequently at offset latencies between -1000 and +500 ms (i.e.

between the onset of the unexpected sequential digit [red frame] and the offset of the first non-sequential) following extended sequences. Dotted lines and bars depict

mean offset latencies for regular sequences per group ± 2 SEM. (B) Similarly, shown here for a short regular sequence (length of 5 digits), the gain group was found to

release the response button more frequently at offset latencies between -500 and +500 ms (i.e. between the onset of the last sequential digit and the offset of the first non-

sequential digit) following regular sequences. Dotted lines and bars depict mean offset latencies for extended sequences per group ± 2 SEM.

https://doi.org/10.1371/journal.pone.0218311.g004
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pattern very similar to previous prediction error ERPs, including both a significant posterior

P3b (324–574 ms, peaking around 422 ms) and a right-lateralised P600 (peaking around 554

ms, Fig 5B). Notably, P3b and P600 peak latencies thus occurred slightly earlier for prediction

errors than for checkpoints. No significant potentials were found in the fronto-central subset.

Since strategic adaptation of CP processing as a function of context uncertainty was one of

the central objectives of the previous fMRI study, we subsequently split the analysis to sepa-

rately assess high and low uncertainty checkpoint ERPs. P3b and P600 were found for check-

points in both uncertainty conditions (Fig 6). Interestingly, while the P3b component was

virtually identical in both latency and scalp distribution, we found subtle differences regarding

the P600: At the group level, the activation peak occurred ~50 ms earlier and slightly more

frontally for high (500 ms at CP4) than for low uncertainty checkpoints (554 ms at P6, see

Fig 6).

Recall that we observed an earlier P3b peak for prediction errors (388 ms) than for low (426

ms) and high uncertainty checkpoints (418 ms). In contrast, P600 peak latencies were identical

for PE and high uncertainty CP (500 ms) and earlier than for low uncertainty CP (554 ms).

This pattern of ERP results suggests a close functional relationship of prediction errors and

(particularly high uncertainty) checkpoints (see Figs 5A and 6). This relationship and its

Fig 5. (A) Significant ERP differences between prediction errors and sequential standards included a parieto-central P3b (left) as well as a right-lateralised P600

component peaking over electrode P6 (right). P3b topography shows the frontal and parietal subsets of electrodes used for the analysis (bottom left). Significant clusters

are marked in bold. (B) ERP differences between checkpoints and sequential standards were equally reflected in significant P3b (left) and P600 components (right).

Respective bottom panels show component evolution over time (all electrodes, no temporal constraints).

https://doi.org/10.1371/journal.pone.0218311.g005
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variation under uncertainty were the main objective of our subsequent multivariate segmenta-

tion analysis (see below).

Given the reported conceptual and functional similarities between prediction errors and

checkpoints, their direct contrast was meant to reveal the correlate of expectation violation

definitive of PE. We hypothesised this mismatch to be reflected in an enhanced N400 compo-

nent. Accordingly, we included all time points between 300 and 500 ms in a one-sided whole-

brain analysis (6262 comparisons in total). PE were found to elicit a significantly enhanced

N400 over parieto-central electrodes (338–500 ms) peaking around 418 ms (Fig 7). No addi-

tional significant components were found in the subsequent whole-brain analysis including all

time points between 0 and 600 ms (18600 comparisons in total).

Multivariate segmentation. Cartool’s meta-criterion showed that group-averaged ERPs

of checkpoints, prediction errors, and standard trials were optimally described by a set of 12

topographic template maps (TM). Fig 8 shows the temporal progressions of these topographies

for each condition. Visual inspection suggested notable differences between conditions within

two main time frames. First, following a virtually simultaneous onset of fronto-centrally dis-

tributed TM 11 (around 204 ms), PE and high uncertainty CP exhibited a sustained frontal

cluster (TM 2, 284–326 ms) after transitioning through a more global TM 12 (Fig 8, Box A).

Fig 6. Grand averaged ERPs of low (top row) vs high uncertainty checkpoints (bottom row) and sequential standards. Checkpoints elicited significant P3b (left) and

P600 components (right) irrespective of the uncertainty level. Note that, while uncertainty did not modulate P3b scalp distribution or peak latency, the P600 elicited by

high uncertainty checkpoints showed an earlier peak and a slightly more frontally distributed topography.

https://doi.org/10.1371/journal.pone.0218311.g006
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Whereas this frontal shift was not found for low uncertainty CP, it was even more pronounced

for STD (i.e., with a higher amplitude and an earlier onset). After fitting the group-level tem-

plate maps onto individual subject data, one-sided t-tests confirmed a significantly greater

global field power of TM2 for STD compared to PE (t(13.08) = 1.91, p = .039) and CP HIGH (t
(14.83) = 1.83, p = .044). Similarly, onsets of TM2 occurred significantly earlier for STD than

for CP HIGH (t(20.86) = - 1.95, p = .033). The comparison of STD and PE showed a non-sig-

nificant trend (t(15.42) = - 1.67, p = .057).

Second, ERP time courses showed differential topographic as well as temporal configura-

tions during a later time frame (starting at around 360 ms). Prediction errors and both check-

point conditions shared a frontal-to-parietal shift (TM 3–5) with particular differences in

cluster onset and duration (Fig 8, Box B). In contrast, sequential standard trials showed a dis-

tinct ongoing frontal topography with a slight dominance of left hemisphere sources (TM 9,

406–540 ms). Group-level onset and duration for the reported topographies are listed in

Table 1.

Discussion

Predicting events of everyday life, our internal model of the world is constantly compared to

sensory input we perceive. Prediction errors induced by unexpected events are deemed

Fig 7. The direct comparison of prediction errors and checkpoints revealed a significant N400 component peaking around 418 ms over parieto-

central electrodes. Bottom panel shows component evolution over time.

https://doi.org/10.1371/journal.pone.0218311.g007

Model-compliant events in predictive processing

PLOS ONE | https://doi.org/10.1371/journal.pone.0218311 June 13, 2019 14 / 22

https://doi.org/10.1371/journal.pone.0218311.g007
https://doi.org/10.1371/journal.pone.0218311


particularly informative in that they instigate learning through model updating. We show here

that information is equally sampled from expected events at particularly relevant checkpoints,

suggesting that under uncertainty, model-affirmative events similarly prompt recourse to the

internal model. Both checkpoints and prediction errors showed a significant P3b component

when compared to sequential standards, indexing the relative (im)probability of CP and PE

occurrence. Conversely, the direct comparison of CP and PE revealed a significant N400 com-

ponent as the mismatch correlate elicited solely by prediction errors. Combined with findings

from behavioural and functional microstate analyses, checkpoint characteristics highlight the

significance of informative reference points for abstract predictive processing, raising intrigu-

ing questions for future research.

Functional characteristics of checkpoints

In order to establish a more precise characterisation of checkpoints, they have to be related to

and dissociated from two other event types: First, since checkpoints are regular events, they

share the expectedness of sensory input with sequential standards. In contrast to these stan-

dards, however, checkpoints are probabilistic and therefore informative with regard to task

context and behavioural requirements. Second, PE are equally informative but do carry a mis-

match signal that requires behavioural adaptation in opposition to the internal model.

As hypothesised, the significance of checkpoints and prediction errors as particularly mean-

ingful points in time was reflected in a joint P3b component compared to least informative

standards. Often discussed as an index of enhanced information transmission and allocation

of resources [33–34], P3b is well suited to reflect exploitation of information at these sequential

Fig 8. Global field power (GFP) of group-averaged ERPs for prediction errors, checkpoints under high/low uncertainty,

and sequential standard trials time-locked to stimulus onset. Coloured segments within the area under the curve depict

distinct topographic configurations (template maps, TM) as revealed by hierarchical clustering. Upper panel shows scalp

distributions of TM depicted in Box A (TM 11, 12, 2) and B (TM 3, 4, 5, 9). Note that the CP LOW curve was flipped for

illustrative purposes only and did not differ in polarity.

https://doi.org/10.1371/journal.pone.0218311.g008
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positions. More precisely, an incoming stimulus is evaluated in context of previous stimuli by

comparing it to information from working memory [35–36]. Such monitoring is immediately

beneficial for stimulus classification and–where required–transforming this information into

action [37–38]. These proposals fit well with central findings from the original fMRI study in

which we found enhanced activation at checkpoints under high (vs low) contextual uncer-

tainty. We interpreted these effects as an iterant evaluation of model information retrieved

from working memory, pointing towards a strategic adaptation of predictive processing to

contextual statistics [7]. Notably, the observed activation pattern included the temporo-parie-

tal junction (TPJ), a hypothesised cortical source of the P3b [39]. Common ERP components

and the similarities in functional microstates thus further illuminate the processing of CP and

PE as highly informative events, suggesting that positions of potential and actual prediction

errors are being exploited in a similar way.

It remains the key difference between checkpoints and prediction errors that only the latter

violated cue-based predictions. Therefore, despite the similarities reported above, CP and PE

will eventually be processed differently once consequences of the actual stimulus come into

effect. Supporting our initial hypothesis, the mismatch signal for PE (vs CP) was reflected in

an N400 component. N400 effects have typically been reported when words mismatched

semantic expectations shaped by previous context information (e.g., [40]). Closely related to

the present paradigm, centro-parietal N400 effects following incorrect (vs correct) solutions in

arithmetic tasks (e.g., [41]) point towards a more general process independent of stimulus

modality. Accordingly, Kutas & Federmeier [11] discuss the N400 as an index of conceptual

representations which–when contextually induced predictions are violated–may need to be

refined. Such adaptive processes are conceivably reflected by components occurring even later

Table 1. Group-level onset and duration of selected template maps for PE, high/low uncertainty checkpoints, and

sequential standard trials. Time frame for grand average ERP analysis [–100, 600] ms.

TM class Condition

PE CP HIGH CP LOW STD
TM 2
Onset (ms) 284 284 - 236 | 368

Duration (ms) 42 42 - 94 | 38

TM 3
Onset (ms) 326 | 360 360 370 330

Duration (ms) 12 | 78 62 48 38

TM 4
Onset (ms) 438 422 418 -

Duration (ms) 34 50 72 -

TM 5
Onset (ms) 472 472 328 | 490 -

Duration (ms) 104 76 42 | 70 -

TM 9
Onset (ms) - - - 406

Duration (ms) - — - 134

TM 11
Onset (ms) 204 204 206 202

Duration (ms) 38 48 30 34

TM 12
Onset (ms) 242 252 240 -

Duration (ms) 42 32 88 -

https://doi.org/10.1371/journal.pone.0218311.t001
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than the PE-related N400, e.g., ERPs related to subsequent digits ‘confirming’ the initially sur-

prising stimulus. Future research could make use of later time frames to further distinguish

prediction errors and checkpoints with regard to the respective consequences they entail.

To summarise, checkpoints are informative points in time which, despite a lack of unex-

pected input, show close functional similarities to canonical prediction errors. Our findings

suggest that information from particular sequential positions, irrespective of the actual out-

come, is used for evaluation and/or updating of internal models. Importantly, while sensory

input at CP complied with the more likely expectation, their sequential positions were tagged

by the statistical structure inherent in the stimulus stream. Previous fMRI results have shown

CP to be exploited particularly in highly uncertain contexts, conceivably in order to solve

ambiguity with regard to upcoming sensory information and efficiently adapt behaviour.

Overall, the functional profile of checkpoints conceptually relates to bottleneck states [42–43]

from the realm of hierarchical reinforcement learning. Bottleneck states form natural subgoals

in hierarchical representations of behaviour [44–45]. For example, when trying to find the

kitchen in a friend’s house, certain features like doors and stairways operate as bottlenecks

informing the search [42]. Consequently, bottlenecks are conceptualised as transition points

between larger sets of representational states. Similarly, on a more abstract level, the sequential

positions of CP and PE mark informative transition points between predictable and non-pre-

dictable (random) states. Depending on whether or not the presented stimulus complied with

cue-based expectations, checkpoints and prediction errors are supposedly used for model eval-

uation and updating, respectively.

Implications for predictive processing

Combined ERP and microstate findings of the present study revealed considerable similarities

between the representations of checkpoints and prediction errors. On a broader scale, this sug-

gests overlapping roles of CP and PE in predictive processing. Given that error-based model

updating has been established to be fundamental for associative learning [46], CP could simi-

larly be used for model evaluation. Clearly, expectation-compliant information (as observed at

checkpoints) does not call for corrective model updating. It seems unlikely, however, that

potentially critical information extracted from CP would not be used to evaluate the validity of

model statistics on-line. Particularly for the estimation of higher level statistics, the number of

regular outcomes at critical time points is no less instructive than the number of prediction

errors. Support for this proposition comes from earlier studies using digit sequences in

abstract predictive processing. Kühn and Schubotz [6] found a distinct frontal correlate of reg-

ular, model-compliant events at sequential positions where statistically rare breaches of expec-

tancy had previously been observed. As the actual sensory input neither violated model-based

predictions nor called for behavioural adaptation, these frontal responses reflected increased

weight of bottom-up signals driving potential model updating solely based on statistical regu-

larities. Another study manipulated the requirement to either ignore or respond to two differ-

ent expectation violations [47]. Again, violations that could be ignored (‘drifts’) did confirm

the internal model, whereas violations that required a response (‘switches’) prompted correc-

tive model updating. The pattern of brain activation suggested a two-step neural response to

these events, starting with joint processing of stimulus discrimination followed by distinct cor-

relates of behavioural responses prompted by the respective violation type.

In line with these previous findings, we suggest information from checkpoint and predic-

tion error time points to be evaluated irrespective of the actual outcome (distinguishing both

events from non-informative standard trials), especially under uncertainty. Successive model

adaptation is induced only in case of unexpected stimuli (distinguishing PE from CP). As the
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temporal resolution of fMRI did not allow for the inclusion of standard trials in the original

study, it remains an intriguing question for future research to determine how context (in)sta-

bility influences the expectation and processing of these informative events.

In addition to effects of context uncertainty, behavioural subgroup analyses suggested

inter-individual differences in cue learning as a determining factor for CP/PE processing: The

more strongly participants had learned the cue-length association, the more often they showed

early responses at the end of a sequence. Depending on which sequence was observed, this

response pattern had diverging implications on behavioural efficiency: In case of regular

sequences, early releases during the last sequential digit showed how strong anticipation of the

sequence ending spurred fast and efficient responses. Critically, however, the very same antici-

pation led some participants to erroneously respond at the ‘would-be’ end of extended

sequences. One explanation could be that (overly) successful cue learning triggered a consis-

tent prediction of sequence length (“Five digits after green”) irrespective of context-dependent

violations. This way, information from checkpoints (in regular sequences) or prediction errors

(in extended sequences) would not be exploited, as indicated by the negative correlation

between event-specific surprise and offset latency. Overall, these results suggest that partici-

pants with increased knowledge of cueing information strongly (and sometimes falsely) relied

on these initial cues, virtually disregarding potentially informative transition points during the

sequence. In other words, excess reliance on cue information led to less attention being given

to these transition points. More formalised accounts of predictive processing have postulated

attention to control the involvement of prior expectations at different levels [48]. Specifically,

attention is conceptualised as a means to increase the weight (or gain) of neural responses cod-

ing error signals, making them more eligible to drive learning and potential behavioural

adjustments. Strict adherence to cue information conceivably impedes allocating attentional

resources to CP/PE time points and, consequently, model adaptation. One promising direction

for future studies would thus be to specifically vary training exposure between groups and

assess the interplay of bottom-up and top-down dynamics underlying CP/PE processing.

Limitations and future directions

The main aim of the present study was to exploit the temporal benefits of EEG for an extension

of previous fMRI results. In order to warrant a high degree of comparability between the two

studies, we chose a full replication of the experimental paradigm. As a consequence, it remains

a limitation of the present study that half of the checkpoints required a response whereas the

other half did not (for discussion, see [7]). To this end, one central direction for studies cur-

rently in preparation is to reduce the number of prediction error types, effectively ensuring

equal behavioural relevance of all checkpoints. Furthermore, some caution is required when

interpreting ERPs elicited by events of naturally varying presentation frequencies. Therefore,

despite our best effort to limit noise in the EEG data, further research is needed to consolidate

the functional characteristics of checkpoints and (less frequent) prediction errors.

There are several promising analyses beyond the scope of this paper which would not have

been ideal for the current ERP epochs (-100 ms to 600 ms). Going forward, specifically re-

epoching the data to include a longer pre-stimulus period would allow ERP and time-fre-

quency analyses of anticipatory CP/PE processing as a function of uncertainty. Relatedly, the

microstate analyses presented here motivate a more in-depth multivariate assessment of STD,

CP, and PE representations, extending our understanding of similarities and differences

between them. For example, STD trials should be reliably discriminable from CP and PE

already during the pre-stimulus period, reflecting the anticipation of task-relevant information

that can be obtained from the latter. Thus, representations of CP and PE should be similar
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during the pre-stimulus period but distinct during later periods reflecting actual outcome pro-

cessing. Learning about the time course and potential uncertainty modulation of these com-

parisons will provide a more comprehensive account of the factors driving abstract prediction.

Conclusion

Checkpoints are probabilistic, cue-compliant events informing predictive processing. Their

functional profile closely resembles that of canonical prediction errors, indicating similar roles

of the two event classes in abstract prediction. Both types of events presumably serve as refer-

ence points providing behaviourally relevant information, the central distinction being

whether the respective outcome violates the internal model (PE) or not (CP). We suggest that

despite the expected input observed at checkpoints, information at these particular positions is

exploited on-line in order to adapt behaviour. Intriguing questions remain with regard to

underlying network dynamics and their potential modulation as a function of uncertainty.

Supporting information

S1 Fig. ERP topographies for the three analyses detailed in the main text. Bold electrode

positions indicate significant clusters from hypothesis-driven ROI analyses, asterisks indicate

significant clusters from temporally unconstrained whole-brain analyses. Bold asterisked elec-

trode positions indicate ROI-based clusters which remained significant after whole-brain cor-

rection using cluster mass permutation tests. PE = prediction errors, STD = standard trials,

CP = checkpoints.

(TIFF)

S1 Table. Detailed trial numbers for all conditions. Since low and high uncertainty blocks

were each presented four times, trial numbers in parentheses show grand total number of pre-

sentations.

(DOCX)

S2 Table. Total number of presentations for all events of interest and the minimum of trial

numbers remaining after artefact rejection. PE = prediction errors, STD = standard trials,

CP = checkpoints.

(DOCX)

Acknowledgments

We would like to thank Monika Mertens, Katharina Thiel, and Alina Eisele for their help dur-

ing data collection.

Author Contributions

Conceptualization: Daniel S. Kluger, Laura Quante, Ricarda I. Schubotz.

Data curation: Daniel S. Kluger, Laura Quante.

Formal analysis: Daniel S. Kluger, Axel Kohler.

Investigation: Daniel S. Kluger.

Methodology: Daniel S. Kluger, Laura Quante, Axel Kohler.

Project administration: Axel Kohler, Ricarda I. Schubotz.

Supervision: Ricarda I. Schubotz.

Model-compliant events in predictive processing

PLOS ONE | https://doi.org/10.1371/journal.pone.0218311 June 13, 2019 19 / 22

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0218311.s001
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0218311.s002
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0218311.s003
https://doi.org/10.1371/journal.pone.0218311


Visualization: Daniel S. Kluger.

Writing – original draft: Daniel S. Kluger, Ricarda I. Schubotz.

Writing – review & editing: Daniel S. Kluger, Laura Quante, Axel Kohler, Ricarda I.

Schubotz.

References
1. Rao RPN, Ballard DH. Predictive coding in the visual cortex: a functional interpretation of some extra-

classical receptive-field effects. Nat Neurosci. 1999; 2: 79–87. https://doi.org/10.1038/4580 PMID:

10195184

2. Mumford D. On the computational architecture of the neocortex. Biol Cybern. 1992; 66:241–251.

PMID: 1540675

3. Friston KJ. A theory of cortical responses. Philos Trans R Soc London B Biol Sci. 2005; 360: 815–836.

https://doi.org/10.1098/rstb.2005.1622 PMID: 15937014

4. Rescorla RA, Wagner AR. A theory of Pavlovian conditioning: Variations in the effectiveness of rein-

forcement and nonreinforcement. Classical conditioning II: Current research and theory. 1972; 2: 64–

99.

5. Bastos AM, Usrey WM, Adams RA, Mangun GR, Fries P, Friston KJ. Canonical microcircuits for predic-

tive coding. Neuron. 2012; 76: 695–711. https://doi.org/10.1016/j.neuron.2012.10.038 PMID:

23177956
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