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a b s t r a c t 

Recognizing the actions of others depends on segmentation into meaningful events. After decades of research in 

this area, it remains still unclear how humans do this and which brain areas support underlying processes. Here 

we show that a computer vision-based model of touching and untouching events can predict human behavior 

in segmenting object manipulation actions with high accuracy. Using this computational model and functional 

Magnetic Resonance Imaging (fMRI), we pinpoint the neural networks underlying this segmentation behavior 

during an implicit action observation task. Segmentation was announced by a strong increase of visual activity 

at touching events followed by the engagement of frontal, hippocampal and insula regions, signaling updating 

expectation at subsequent untouching events. Brain activity and behavior show that touching-untouching motifs 

are critical features for identifying the key elements of actions including object manipulations. 

1

 

c  

s  

e  

w  

c  

b  

d  

(  

w  

B  

2  

f  

m  

D  

m  

t  

b  

a  

c

W

f  

t  

o  

d  

p  

o  

C  

S
 

f  

(  

c  

(  

c  

f  

b  

t  

T  

t  

f  

m  

h

R

A

1

(

. Introduction 

Actions performed by others provide us with a continuous stream of
omplex perceptual input. Still, this stimulus entails a smoothly joined
equence of segments, which we can easily distinguish. Action observers
xpose an intra-individually highly consistent segmentation behavior
hen asked to indicate action steps by button presses ( unit marking pro-

edure; Newtson, 1973 ), suggesting that they perceive actions in sta-
le units separated by breakpoints. These action segments have the ten-
ency to preserve their integrity for instance by resisting interruptions
 Newtson and Engquist, 1976 ) and missing content ( Kosie and Bald-
in, 2019 ), and being robust to perspective shifts ( Swallow et al., 2018 ).
reakpoints systematically receive increased attention ( Hard et al.,
011 ) and recognition memory for breakpoints is superior to that
or other intervals ( Swallow et al., 2009 ), probably because episodic
emories emerge from significant contextual changes ( Clewett and
avachi, 2017 ). This suggests that breakpoints contain more of the infor-
ation from the continuous sequence than non-breakpoints and lead to

he formation of new memory traces ( Gershman et al., 2014 ). Moreover,
reakpoints indicate that a distinctive change has occurred, rather than
 distinctive state has been achieved (meaningful changes vs. meaning-
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ul states; Newtson et al., 1977 ). Event segmentation, applicable not only
o observed actions but also to speech ( Aslin, 2017 ; Wu and Bulut, 2020 )
r music ( Sridharan et al., 2007 ), is suggested to efficiently improve pre-
ictions about the near future by integrating information over the recent
ast ( Kurby and Zacks, 2008 ), and indeed, evidence of predictive action
bservation is abundant (e.g. Botvinick and Plaut, 2004 ; Colder, 2011 ;
sibra and Gergely, 2007 ; Graf et al., 2007 ; Kilner et al., 2007 , 2004 ;
chiffer et al., 2013b ; Stadler et al., 2011 ). 

But what exactly determines how to segment an action into meaning-
ul chunks? Humans spontaneously learn and use statistical information
 Fiser et al., 2010 ; Perruchet and Pacton, 2006 ; Tobia et al., 2012 ), in-
luding 1st and 2nd level statistical structure during action observation
 Ahlheim et al., 2014 ). A large repertoire of natural action segments
ould emerge simply from repeated experience of these segments in dif-
erent contexts ( Avrahami and Kareev, 1994 ). Importantly, breakpoints
etween action segments entail the most invariant stages of an action
hat occur in each effective action sequence ( Byrne and Russon, 1998 ).
hus, breakpoints are reliable anchors in actions, but at the same time
hey mark the transition into phases of highest uncertainty, because dif-
erent subsequent segments can be linked to the end of an action seg-
ent. Because the predictability regarding the further course of action
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s lowest at breakpoints, updating processes of the internal event model
re presumably triggered exactly at this point in preparation for the
oming action step ( Kurby and Zacks, 2008 ; Schubotz et al., 2012 ). Ac-
ording to a recent model, event segmentation is driven by changes in
nferences about what has generated them ( Shin and DuBrow, 2021 ),
aking volatility, i.e., the inferred rate of change of the environment,
 decisive factor regarding event segmentation ( Hohwy et al., 2021 ).
reakpoints hence seem to be “stop and see ” moments, where the com-
leted action segment connects to the upcoming segment, and typically,
here are several candidates for this upcoming segment, each having a
ertain probability. 

Corroborating this assumption, it was found that brain activity dur-
ng action observation varies as a function of the statistical structure pro-
ided by action segments ( Schubotz et al., 2012 ). More specifically, the
OLD response increase reflects the level of quantified surprise at each
reakpoint ( Ahlheim et al., 2016 ; Ahlheim et al., 2014 ; Schiffer et al.,
013b , 2013 ), which has also been found in other paradigms as natu-
alistic movie perception ( Brandman et al., 2021 ) and sports viewing
 Antony et al., 2020 ). However, a crucial remaining question is exactly
hat kind of information drives human event segmentation. Functional
RI research suggests that changes in motion may serve as a core marker

f breakpoints in actions, since brain areas specialized for motion pro-
essing, especially human motion area hMT, are significantly activated
t breakpoints ( Schubotz et al., 2012 ; Speer et al., 2003 ). 

In the present fMRI study, we used a computer vision approach to di-
ectly test the assumption that human event segmentation relies on, and
ence is predicted by, dynamic changes of the spatial relations between
bjects, hands and ground. Computer vision provides a unique avenue
o objectively determine dynamic stimulus properties by extracting so-
alled touching and untouching events between objects (TUs, hereafter).
ased on earlier works, our present approach provides a generic encod-

ng scheme for object manipulations by constructing a dynamic graph
equence from continuously tracked RGB-D sensor data of action videos
 Aksoy et al., 2011 ; Wörgötter et al., 2013 ). Topological transitions of
hese graphs occur whenever objects touch or untouch and are stored
n a transition matrix called the semantic event chain (SEC). Crucially,
his account is model-free and strictly stimulus-driven: It does not dif-
erentiate between hands, objects, or ground, nor does it require any
unctional or semantic knowledge about objects. 

In a first step, a set of 48 object manipulations was recorded and
ubjected to a stimulus-driven segmentation of SEC events based on the
xtraction of TUs. In a second step, we presented 31 participants with
he same videos in an fMRI study while they performed a cover task
eeping their attention on the observed action. Subsequently, we con-
ucted a test-retest procedure where the same group of participants en-
aged in a unit marking task, i.e. they indicated breakpoints in the action
ideos by button presses. We extracted those unit marks (Ms) that were
onsistently reported on group level (see Section 2.5.3 Determination of
roup-consistent unit marks for details). Finally, brain activity measured
ia fMRI was analyzed with regard to TUs and Ms. Using this approach,
e aimed to determine to what degree brain activity and segmentation
ehavior in humans were linked to the event structure derived from
omputer vision. 

We reasoned that if TUs are critical time points for action segmen-
ation, then they should show a systematic relationship to Ms or even
ccount for human segmentation behavior. Such a systematic relation-
hip could mean that TUs and Ms temporally coincide or that we find
 systematic temporal delay between both types of events. In case of
oincidence, we expected to replicate previously found brain activation
atterns for behaviorally determined action breakpoints, including in-
reased engagement of motion sensitive area hMT, and in addition, also
ngular gyrus, superior frontal sulcus (SFS), and parahippocampal gyrus
PHG). While area hMT was found to increase at breakpoints also in co-
erent human motion in the form of Tai Chi videos, this fronto-parieto-
ippocampal network became specifically engaged for breakpoints in
oal-directed actions, presumably reflecting recall from semantic action
2 
nowledge ( Schubotz et al., 2012 ). In the case that Ms and TUs do not
r do not always coincide in time, we expected brain responses to differ-
ntiate between either type of event, allowing to dissociate the neural
rocesses associated with TU analysis and segmentation decisions. 

. Methods 

.1. Participants 

Thirty-one participants ( M age = 23.84 years, SD = 3.01, age
ange = 18 - 31 years, 25 women, 6 men) participated in the present
tudy. The data of one additional participant was excluded from
he analyses due to misunderstood instructions. All participants were
ight-handed as determined by the Edinburgh Handedness Inventory
 Oldfield, 1971 ), had normal or corrected-to-normal vision, intact color
erception, had no history of neurological or psychiatric diseases and
et the criteria for MRI scanning. Twenty-nine of the participants were

tudents. The local ethics committee of the Faculty of Psychology (Uni-
ersity of Muenster, Germany) approved that the current study followed
he principles set by the Declaration of Helsinki. The participants pro-
ided informed consent and either received course credits or were paid
or their participation. 

.2. Stimulus material 

The manipulation actions for the video stimuli were chosen accord-
ng to the SEC framework ( Wörgötter et al., 2013 ). Twelve actions were
elected belonging to six action categories (see Supplementary Table
 for a list of the individual object manipulations). Each action was
ecorded using four different objects which resulted in 48 object ma-
ipulations. Action videos were recorded using an industrial camera
BASLER acA 1300–75 gc) with a TV zoom lens (11.5 – 69 mm, 1:1.4)
s well as an ASUS Xtion Live RGB-D sensor (ASUS TeK Computer Inc.,
aipeh, Taiwan) recording color as well as depth images. For the video
timuli, the BASLER recordings were used, showing the actress from
he front up to the shoulders performing the action on a white table.
he ASUS Xtion Live recorded the actions from above and its record-

ngs were utilized for TU time point extraction (see Section 2.3 Video
egmentation and SEC Determination). For each object manipulation
ix to seven unique video takes were chosen for the final stimulus set
eaning that no video was repeatedly presented. In total, 294 action

ideos were shown to the participants. The videos had a frame rate of
3 fps. Each video started 10 frames before the hand lifts from the table
o act and finished 5 frames after the hand lies back on the table with
 video duration ranging from 72 frames to 185 frames ( M = 114.79,
D = 19.74), i.e. 3130 ms to 8044 ms ( M = 4991, SD = 858). To in-
rease perceptual variability, the videos were mirrored so that actions
eemed to be performed by the left hand. Each participant saw half of
he actions mirrored. 

The stimulus sequence was designed as a second-level counter-
alanced De Bruijn sequence with seven conditions (6 action cate-
ories + null condition). Using the De Bruijn cycle generator by Aguirre
nd co-workers ( Aguirre et al., 2011 ), 500,000 sequences were gener-
ted using NeuroDebian 8.0.0 ( Halchenko and Hanke, 2012 ) and then
he starting point of each sequence was shifted 47 times (length of the
rst run) resulting in 24,000,000 possible sequences of which the opti-
al one was chosen using a custom-built MATLAB R2019a (The Math-
orks Inc., Natick, MA, USA) script. Subsequently, condition labels of

he six experimental conditions were permuted to create 20 different
timulus lists. Per list, half of the stimuli were mirrored and a second
ist contained the complement of these which gave 40 different stimu-
us lists in total. For the second and third experimental session, the start
f the individual stimulus sequence was shifted by one third and two
hird, respectively, to prevent recognition of the stimulus sequence as
ell as time-dependent effects. For the fMRI session, the stimulus se-
uence was subdivided into seven runs and at the start of each run the
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Fig. 1. Schema of the procedure for extracting the time points for touching and untouching events from an exemplary action, here “turning calculator ”. A) Point 

cloud extraction and preprocessing of RGB images. B) Clustering point clouds and calculating silhouette values. C) Curve fitting using artificial neural network 

(ANN): Raw silhouette values (black), smoothed silhouette values using median filter (red) and fitted silhouette curve using ANN (blue). D) Extraction of time events: 

Derivative of the ANN fit (green) and obtained time points of TU events after thresholding: t1 – hand detaches from the table (i.e., first untouching), t2 – hand touches 

calculator (i.e., first touching), t3 – hand detaches from the calculator (i.e., second untouching), and t4 – hand touches the table (i.e., second touching). Thus, in this 

example a U-T-U-T sequence is extracted. A demo source code of automated extraction that corresponds to the shown example can be downloaded from the OSF 

repository (accession code: https://osf.io/jbwkq/?view_only = e07e36461db248d281597d44c0f83cb9 ). 
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ast two videos of the preceding run were repeated and then discarded
rom analyses to presume a continuous stimulus sequence. 

.3. Video segmentation and SEC determination 

We used an automated extraction of time points of TU events,
nabling a fast and accurate segmentation of action sequences based on
bjective criteria. A schema for the automated extraction of time points
t which touching/untouching relations between object pairs change
s shown in Fig. 1 and a demo source code underlying the example in
ig. 1 can be downloaded from the OSF repository (accession code:
ttps://osf.io/jbwkq/?view_only = e07e36461db248d281597d44c0f83 
b9 ). Here we used the frame number to define the time points. The
nput to the algorithm is a sequence of RGB-D frames fi ( i = 1…n, n
s the number of frames) and the output is a sequence of time events
i ( i = 1…m, m is the number of TU events which was predefined
anually). In the following subsections we provide details for the four
ain steps of the algorithm. 

.3.1. Point cloud extraction and preprocessing 

Point clouds for each frame f i were generated from depth images
hich were acquired using ASUS Xtion Live sensor. Region of interest
n the left side of the frame was cut as shown in Fig. 1 , since always
nly one hand was involved in the analyzed actions. Furthermore, point
louds were subsampled by a factor of four in order to reduce the amount
f points this way speeding up the clustering procedure. Before clus-
ering, plane subtraction was performed. In most of the cases, ground
3 
lane subtraction (i.e., points corresponding to the table) was done by
tting flat 2D surface and then removing all points from the 3D point
loud data which were below the fitted ground plane (see black points
n Fig. 1 B). To be more specific, we removed points p i = {x i ,y i ,z i } , if z i -
 i < th , were Z i = P(x i ,y i ) are corresponding points of the fitted plane P ,
nd th = 0.015 is the ground plane threshold. The removed points p i were
ot included to further cluster analysis. In some cases where very flat
bjects were present in the scene (e.g. a newspaper, playing card, etc.),
e used color-based ground plane subtraction instead of the plane fit-

ing procedure. Thus, for the clustering step, we only used point clouds
f the hand and objects. 

.3.2. Clustering and calculation of Silhouette scores 

Clustering of points (objects) was performed based on 3D point co-
rdinates p i = {x i ,y i ,z i } by using hierarchical clustering with Euclidean
istance as a similarity measure and Ward’s method as a linkage method.
he clustering procedure was repeated K- 1 times for each frame f i 
 i = 1…n) with a predefined number of clusters k = 2…K , where K is
he number of objects including the hand (but excluding the table). For
ach frame f i we computed an average Silhouette score as follows: 

 

(
𝑓 𝑖 
)
= 𝑠𝑢𝑚 

(
𝑆 𝑘 

)
∕ ( 𝐾 − 1 ) , with (1)

 𝑘 ( 𝑗) = 𝑠𝑢𝑚 [ ( 𝑚𝑖𝑛 ( 𝐷 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 ( 𝑗, 𝑙 ) ) − 𝐷 𝑤𝑖𝑡ℎ𝑖𝑛 ( 𝑗) )∕ max ( 𝐷 𝑤𝑖𝑡ℎ𝑖𝑛 ( 𝑗) , 

min ( 𝐷 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 ( 𝑗, 𝑙 ) ) ) ]∕ 𝑁, (2) 

here D within (j) is the average distance from the j-th point to the other
oints in its own cluster, and D (j,l) is the average distance from
between 

https://osf.io/jbwkq/?view_only=e07e36461db248d281597d44c0f83cb9
https://osf.io/jbwkq/?view_only=e07e36461db248d281597d44c0f83cb9
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he j-th point to points in another cluster l . Here N is the total num-
er of points. The Silhouette score for each point j measures how sim-
lar that point is to points in its own cluster in comparison to points in
ther clusters. The values of the Silhouette score are between − 1 and
. Thus, when two clusters are getting closer, then the average score
(f i ) decreases, while it increases when clusters are getting apart (see
ig. 1 C). In this way, we used Silhouette values to find TU events. Note
hat the average silhouette value was less susceptible to noise in the
oint cloud data than the maximum value, resulting in a more accurate
stimate of TU events. See the OSF repository (accession code: https://
sf.io/jbwkq/?view_only = e07e36461db248d281597d44c0f83cb9 ) for
 simulation of the differences between mean and maximum silhouette
cores. 

.3.3. Fitting of Silhouette curve using ANN 

The time points of TU events can be extracted from the Silhouette
urve; however, Silhouette scores are noisy due to noise present in the
oint cloud data obtained from the RGB-D sensor. Thus, we first filtered
he Silhouette scores S(f i ) using a median filter with a time window of
0 frames and then fitted filtered scores with an artificial neural network
ANN). This leads to a smooth curve with descending and raising slopes
hich allows extracting of time points in the next step. For fitting S(f i ) ,
e used a fully connected feed-forward network with one hidden layer
here in the hidden layer we used a tansig transfer function and in the
utput layer a linear transfer function was used. The number of neurons
n the hidden layer corresponded to the number of sigmoid functions
eeded to fit the Silhouette value function S (see Fig. 1 C,D), which cor-
esponded to changes in cluster configuration, i.e., if two clusters are
erging then objects are touching each other (T) and if two clusters

re getting apart then objects are detaching from each other (U). In the
iven example in Fig. 1 for a “turn calculator ” action, we have four TU
vents (hand lifts up from the table, hand touches the calculator, hand
eaves the calculator, and hand touches the table). Thus, the TU events
ollow an irregular pattern of Ts and Us, and to represent two TU events
ne sigmoid function is needed as demonstrated by an example shown
n Fig. 1 D (see t1, t2 and t3, t4). The number of neurons h in the hidden
ayer was set based on the number of TU events m, i.e., h = round(m/2).
n this case we used two neurons in the hidden layer. The network was
tted ten times and then the best outcome with respect to the minimal
ean squared error between S(f i ) and network’s prediction S ANN (f i ) was
sed for the next step. 

.3.4. Extraction of time points 

Finally, time points of TU events were extracted by applying dy-
amic thresholding to the derivative of the S ANN (f i ). We start with some
nitial threshold value TH ini = 0.01 and increase it by 0.005 until the
redefined number of TU time points is obtained. The time points are
xtracted at the frame numbers where derivative of the S ANN (f i ) crosses
he threshold value TH (see Fig. 1 D). The extracted time points were
hecked against manual segmentation results and time points when-
ver the algorithm misinterpreted the scene which gave an error mes-
age. Deviation from human segmentation on average was 3.49 frames
SD = 3.39), and in 94.45% of the cases deviation was less than ten
rames (i.e., mean value + 2 ∗ SD). Thus, we corrected outliers in 5.55%
f the cases, where event segmentation differences were larger than 9
rames by setting values of automated segmentation to corresponding
alues of human segmentation. The framework was implemented using
ATLAB where standard MATLAB functions for clustering and ANN fit-

ing were used. Extracted TU events were taken as machine-determined
bjective events (TUs) and the middle frames between two TU events
ere taken as non-events (nTU) to be maximally far away from an event.

.4. Experimental procedure 

Participants completed three sessions. The MRI session was on av-
rage 4 days (range = 3 - 7) before the behavioral test-retest sessions
4 
hich were on average 14 days apart from one another (range = 14 -
7). During the first session, participants saw the action videos while be-
ng in the MR scanner. Action videos were back-projected onto a screen
nd presented centrally with a screen resolution of 640 × 512 pixels.
articipants viewed the screen binocularly through a mirror above the
ead coil. Attention capturing questions regularly followed the videos
sking whether an action description is appropriate for the just seen ac-
ion video. Participants responded by pressing one of two response keys
ith their right index and middle finger. See Fig. 2 A for the experimen-

al trial design. Including anatomical scans and six short breaks during
he task, the scanning time amounted to approximately 60 min. The
verall duration of the first session was between 90 - 120 min including
onsent forms, instructions, preparation, scanning and a short survey at
he end. 

The second session comprised the unit marking task ( Newtson,
973 ). Participants saw the same videos as in the first session. Stimuli
ere presented on a 23 ″ monitor by Presentation 18.1 (Neurobehav-

oral Systems Inc., Berkley, CA, USA) and participants were instructed
o press a button with their right index finger whenever they think an
ction step is finished, that is, a breakpoint occurred (cf. Schubotz et al.,
012 ). Training trials were offered at the beginning and two breaks were
rovided after one respectively two thirds of the trials. This task took
pproximately 45 min. See Fig. 2 B for the experimental trial design.
n the third session, this task was repeated to retest the unit marking
ehavior. 

.5. Behavioral data analysis 

.5.1. Intra-individual retest reliability of unit marking responses 

The unit marking procedure is a subjective judgment task, so re-
ponses cannot be right or wrong. Therefore, retest reliability was as-
essed on single subject as well as on group level to ensure that responses
ere consistent and meaningful. In a first step, responses were converted

rom milliseconds to frames (one frame amounting to a 1000/23 ms seg-
ent) to allocate each button press to the correspondingly presented

rame of the video. We did not subtract a hypothetical motor response
ime as participants were highly familiar with the kind of simple every-
ay actions that we employed, and this familiarity was even stronger in
he behavioral sessions when participants saw the videos for the second
espectively third time. Hence, we adopted the premise that responses
ere delivered in anticipation of critical events in the videos, not in a

eactive manner. 
On single subject level, we examined whether test responses matched

etest responses consistently. To this end, trials in which the number of
esponses in the test session equaled the number of responses in the
etest session were used to define an individual consistency criterion c i ,
hich was then applied to all trials independent of the number of re-

ponses. For each response in each of these same-number-of-responses-
rials, the absolute difference d |t-t’| in frames between test button press
 and retest button press t’ was determined, and then averaged over all
esponses per participant. The upper bound of the 95% confidence in-
erval (CI) of this mean difference score per participant was taken as
ndividual criterion c i for consistent button presses in the test and retest
ession. Thus, the individual criteria considered the individual variabil-
ty in reaction times. To prevent too large cut-off values, we additionally
alculated a global criterion c g by averaging the individual criteria of
ur participants. The upper bound of the 95% CI of this average was
sed as global criterion c g to threshold the individual consistency crite-
ia c i . If, for example, the individual criterion c i of a participant was 14.5
rames but the global criterion c g was 12.4 frames, the global criterion
as applied for this participant. In sum, for each retest response t ’, it
as determined whether a test response t appeared within the individ-
al time window around the retest response ( t ’ ± c ). If this was the case,
t was considered a consistent unit marking response. Subsequently, as a
easure of single subject retest reliability, the percentage of consistent

esponses per participant was identified. 

https://osf.io/jbwkq/?view_only=e07e36461db248d281597d44c0f83cb9
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Fig. 2. Experimental design. (A) In the fMRI session, action trials and null trials were passively observed and question trials required participants to confirm or 

reject an action description with regard to the preceding action video. The question disappeared after button press. (B) In the two behavioral sessions (test-retest), 

participants saw the same videos as during fMRI and indicated by button press when they thought an action step had finished. In case no response was given, the 

video was repeated. Example videos are provided in an OSF repository (see https://osf.io/jbwkq/?view_only = e07e36461db248d281597d44c0f83cb9 ). The entire 

stimulus material is available via the Action Video Corpus Muenster (AVICOM, https://www.uni-muenster.de/IVV5PSY/AvicomSrv/ ). 
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To compare these results with random button presses, we in a first
tep shuffled the button press intervals. To this end, we extracted the
ime intervals between button presses (for the first button press in a
ideo, we used the interval between this response and the video onset)
n the test session per participant. From this distribution, we randomly
rew and cumulated intervals to simulate random test session button
resses while preserving the stochastic characteristics of the behavior.
sing this procedure, we generated ten simulated test session data sets,
alculated the percentage of consistent responses per participant (just
ike we did for the actual behavior) and averaged this percentage per
articipant over the ten simulations. To test whether participants per-
ormed more reliably than randomly, we calculated a paired-sample t -
est between the actual percentage of consistent responses per partici-
ant and the percentages based on the simulated data. 

.5.2. Retest reliability of unit marking responses at the group level 

To examine the unit marking responses at the group level, we
moothed the frame-by-frame data with a rectangular kernel with a
idth of three frames (3 ∗ (1000/23) ≈ 130.4 ms, referred to as bin here-
fter). This means, for each video we aggregated the number of re-
ponses for each frame f t plus those from adjacent frames f t-1 and f t + 1 .
hereby we pooled the data of all participants. A maximum of one re-
ponse per participant was included in a bin of three frames, so that
he maximum value a bin could reach was equal to the total number of
articipants ( n = 31). The bin value was then allocated to the middle
rame f t of the bin and will be referred to as frame value hereafter. Con-
equently, the frame value was set to zero if no response had occurred
ithin the bin. 

To determine the group level retest reliability, we correlated the time
eries of frame values per video between the test and the retest sessions
Pearson’s r ). The r -values per video were then Fisher z -transformed,
veraged and retransformed to r to give a mean correlation. 

.5.3. Determination of group-consistent unit marks 

The maximum frame value of an action video was taken to indicate
roup-consistent unit marks (M). Fig. 3 shows the time series of frame
5 
alues based on individual unit markings for two example videos with
orresponding group-consistent Ms at maximum frame values as well as
bjective TU events to illustrate their temporal distribution. In order to
bjectify the maximum frame values, we utilized the ten simulated test
ession data sets that were generated to evaluate single subject retest re-
iability (cf. Section 2.5.1 Intra-individual retest reliability of unit mark-
ng responses) . We applied the same protocol to these ten simulated data
ets as we did to the original data to determine group-consistent unit
arks and compared the resulting maximum frame values to the actual

nes. To determine the non-unit-mark (nM) for the fMRI analyses, one
f the frames with the minimum frame value of zero was randomly cho-
en excluding the first 12 and last 12 frames of each video. Ms and nMs
ere then used to model brain responses. 

.5.4. Convergence of human-determined unit marks (M) and objective 

vents (TU) 

The hypothesis of dependence of human action segmentation (M) on
bjective touching and untouching events (TU) was tested by analyzing
he relationship between human-determined unit markers and objective
vents in several steps. To evaluate whether the majority of Ms coincides
ith TUs, we examined how often a TU was not further than two frames

i.e. maximally ∼130 ms) away from an M. Subsequently, we compared
his result to randomly distributed unit marks. As with the test-retest
erformance of individual subjects, we shuffled the time intervals gen-
rated by the unit marks and randomly drew from this shuffled distri-
ution to simulate random unit marks while preserving the stochastic
haracteristics of the group behavior. We generated ten simulated data
ets containing unit marks, examined individually how often a TU was
o more than two frames away from a simulated M, and then calculated
 one-sample t -test to compare the resulting coincidence rates with the
oincidence rate of the actual unit mark distribution. In addition, we ex-
mined whether the TU closest to an M in each case precedes ("pre-M")
r follows ("post-M") this M, provided that the M and TU events did not
all at exactly the same time. 

Based on the outcome of this analysis (as described in the Results sec-
ion), we examined the temporal relationship between M and TU events

https://osf.io/jbwkq/?view_only=e07e36461db248d281597d44c0f83cb9
https://www.uni-muenster.de/IVV5PSY/AvicomSrv/
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Fig. 3. Pooled unit marking responses of the 

group ( n = 31) for two exemplary object ma- 

nipulation videos: turning a bottle (A), putting a 

cup on top of a saucer (B). Maximum frame val- 

ues were taken as group-consistent unit marks 

(Ms), as indicated in red on the lower x-axis. 

Respective touching (T) and untouching (U) 

events are given in blue and green. 
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n more detail in the following way. Firstly, for the closest TU of each M,
e determined: (a) the direction of time lag (pre-M; post-M), and (b) the

ype of TU (touching, T; untouching, U). Secondly, we determined the
emporal distance between Ms and the TUs events preceding and follow-
ng it. Thirdly, to test whether Ms have a systematic temporal relation-
hip only to Ts but not Us, or vice versa, we determined separately for
ach M the temporally closest touching respectively untouching event
nd inspected their temporal distribution. 

.5.5. Identification of sequential TU motifs embedding unit markings 

Finally, the same close-M touching and untouching events were
xamined with regard to typical sequential motifs embedding Ms us-
ng RStudio (Version 1.3.959, RStudio, PBC, Boston, MA) to identify
timulus-based (objective) reasons for reporting an event boundary. We
ntroduce the term "motif" for a sequence of T and U events that em-
ed M events more than randomly often. For this purpose, the two TUs
receding an M and one TU following an M were taken into account
ielding a TU-TU-M-TU event scheme (e.g., T-U-M-T, T-T-M-U or U-T-
-U). This event scheme was chosen for several reasons. First, M events
ere preceded by at least one and at most two events in most videos

see the plot in Fig. 5 and see also Table 2 in the Supplementary Mate-
ial for a list of all possible triplets and their probability of embedding
n M). We therefore included two TU events before Ms in the analysis.
he event scheme was then analyzed to clarify whether the occurrence
6 
f Ms systematically depended on one or two preceding TU events, as
ormulated in the hypotheses. In addition, one TU event after M was
onsidered in each case to distinguish whether Ms occurred only in re-
ponse to TU events or whether they also indicated (predictively) the
ccurrence of an upcoming TU event. 

Considering the general likelihood of occurrence of such TU-TU-TU
equential triplets, we now explored whether any of these triplets was
ore likely to embed an M than could be expected from its general

stochastic) likelihood. To this end, we performed a chi-square test using
PSS 26 (IBM, New York, USA) to determine whether the proportions of
U-TU-TU triplets embedding an M differ from the general likelihood of
ccurrence of these triplets. Subsequently, we ran post hoc chi-square
ests on single cells adjusting the significance values by multiplying by
he original number of cells to account for multiple comparisons. This
nalysis identified sequential motifs that significantly co-occured with
s. 

.5.6. Manual video content analysis of sequential triplets 

For descriptive reasons, we also examined the content of the most
requently occurring M-embedding motifs. Since object identity was rel-
vant for this, this mapping had to be done manually, as the algorithm
oes not distinguish between objects. For this video content analysis, we
rst defined the phases of transport and manipulation as ‘hand transport’
from untouching of the hand until it touches again), ‘object transport’
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from untouching of the object until it touches again), ‘object manipula-
ion’ (from hand touching the object until it untouches after manipula-
ion), and ‘tool transport’ (hand with tool untouches until tool touches
bject); then we defined the phases where the hand or the tool is in
ontact with the object without moving (transporting or manipulating)
s ‘start of object transport’ (from hand touching object until object un-
ouching to be transported), ‘end of object transport’ (from object touch-
ng at the end of transport until hand untouching the object), and ‘end
f manipulation with a tool’ (from untouching of a part of the object to
ntouching of the tool and the object). For the Ms embedded in T-U-X
equences (i.e., sequences of three events which start with a T followed
y a U and then X stands for either T, U or the end of the video), ei-
her in the first or in the second phase, we extracted the corresponding
ction phase and compared the occurrence rates with the general likeli-
ood of occurrence of these phases using Pearson’s chi-squared test and
ost hoc chi-square tests on single cells adjusting the significance values
y multiplying by the original number of cells to account for multiple
omparisons. 

.6. fMRI data analysis 

.6.1. fMRI data acquisition and preprocessing 

Functional MRI data were acquired using a 3-Tesla Siemens Mag-
etom Prisma MR tomograph (Siemens, Erlangen, Germany) with a
0-channel head coil. Prior to functional imaging, a 3D-multiplanar
apidly acquired gradient-echo (MPRAGE) sequence was run to obtain
igh resolution T1-weighted images (scanning parameters: 192 slices,
R = 2130 ms, TE = 2.28 ms, slice thickness = 1 mm, FoV = 256 × 256
m 

2 , flip angle = 8°). Blood-oxygen-level-dependent (BOLD) contrast
as measured by gradient-echo echoplanar imaging (EPI). Seven EPI se-
uences were used to measure the seven experimental blocks (scanning
arameters: 33 slices, TR = 2000 ms, TE = 30 ms, slice thickness = 3 mm,
oV = 192 × 192 mm 

2 , flip angle = 90°). 
Anatomical and functional images were preprocessed using the Sta-

istical Parametric Mapping software (SPM12; The Wellcome centre for
uman Neuroimaging, London, UK) implemented in MATLAB R2019a.
reprocessing included slice time correction to the first slice, realign-
ent to the mean image, co-registration of the functional images to the

ndividual structural scan, normalization into the standard anatomical
NI space (Montreal Neurological Institute, Montreal, QC, Canada) on

he basis of segmentation parameters, as well as spatial smoothing using
n isotropic 8 mm full-width at half maximum (FWHM) Gaussian ker-
el. To remove low-frequency noise, a 128 s temporal high-pass filter
as applied to the time-series of functional images. 

.6.2. fMRI design specification 

Statistical analyses of functional images were done using SPM12 im-
lementing a general linear model (GLM) for serially autocorrelated ob-
ervations ( Friston et al., 1994 ; Worsley and Friston, 1995 ) and a con-
olution with the canonical hemodynamic response function (HRF). In
ach GLM, the six subject-specific rigid-body transformations obtained
rom realignment were utilized as regressors of no interest. The volumes
f the first two video presentations of each EPI were discarded to allow
or T1-equilibrium effects. 

To investigate functional areas specialized in the processing of action
oundaries, a GLM was constructed including eight regressors of inter-
st coding for onsets and durations of the specific event types: video,
roup-consistent unit mark in the test-retest session (M), no unit mark
n the test-retest session (nM), objective touching event (T), objective
ntouching event (U), non-TU (nTU), null event and question. For each
f the 350 Ms, a nM was determined ( n = 350) (see Section 2.5.3 De-
ermination of group-consistent unit marks) and included in the design.
ikewise, all 814 touching and all 772 untouching events were included
nd correspondingly 772 nTUs (see Section 2.3 Video segmentation and
EC determination). Both types of non-critical events (nTU and nM) ap-
eared distributed over the video duration (Supplementary Figure 1)
7 
nd were chosen to be maximally far away from their corresponding
vents (i.e., as nTUs, the frame in the mid between two TU events were
hosen and as nMs, frames where no participant marked a unit). Group-
onsistent unit marks instead of individual unit marking responses were
hosen to model the data to obtain a more stable model. 

To prevent basic and object motion as well as effects of the mere
ime point in the video from confounding our analyses, we considered
everal factors in the choice of non-critical events and benefitted from
he natural structure of our events. First, hMT was among the regions we
xpected to show increased activity at action boundaries. Previous stud-
es reported that activity in hMT increases at event-segment boundaries,
uggesting that motion information is processed particularly intensively
ere ( Schubotz et al., 2012 ; Speer et al., 2003 ; Zacks et al., 2006 ). How-
ver, to interpret the increased activity in hMT at action boundaries in
his sense, it must be ruled out that this effect is merely due to an in-
rease in motion in the stimulus. This can already be assumed theoreti-
ally, since TU events are accompanied by a sharp slowdown or even a
omplete stop of the movement. However, to show this empirically, we
erformed a dense optical flow analysis for each video and tested the
orrelation between the optical flow values and the binary vectors of
ouching events and untouching events (1 = T /U, 0 = nT/nU). We then
alculated t tests on r -values across all videos. As a result, we found
 weak but highly significant negative correlation of optical flow with
ouching events ( t (293) = − 5.7, p < .001, mean r = − 0.02) and no signif-
cant correlation of optical flow with untouching events ( t (293) = − 1.4,
 = .174, mean r = − 0.006). In addition, we tested for the same correla-
ion effects based on the concatenated vectors of all videos, which also
evealed a weak but significant correlation of optical flow with concate-
ated touching events ( r (33,748) = − 0.02, p < .001) and no such ef-
ect for concatenated untouching events ( r (33748) = − 0.005, p = .361).
hus, as suspected, a weak but clearly significant negative correlation
f motion and T events was found. Although such a weak correlation
hould be interpreted with caution, it allows us to rule out the possi-
ility that T events were associated with an increase in motion in the
timulus. 

Secondly, neither TU events nor M, nTU or nM events did system-
tically occur only at the beginning or the end of the videos, but were
istributed across the entire video duration ( Fig. 5 , Supplementary Fig-
re 1). Relative to the length of the video, the earliest M appeared after
9% of the video and the latest M at the end of the video ( M = 50%,
D = 23). The earliest nM appeared after 11% and the latest after 90%
 M = 45%, SD = 23). Analogously, the earliest TU event appeared after
% and the latest at the end of the video ( M = 50%, SD = 30) and the
arliest nTU event appeared after 7% and the latest after 94% ( M = 50%,
D = 25). 

On the first level, t -contrasts for Ms versus nMs were calculated and
ubmitted to a second-level t -test to detect functional areas specialized
n the processing of action boundaries on group level. Analogously, t -
ontrasts for T versus nTU and U versus nTU were conducted. Further-
ore, we contrasted all TUs (T + U) versus nTUs to detect areas spe-

ialized for both touching and untouching. To assure the specificity of
hese results, we calculated t -contrasts for the direct comparison be-
ween human-determined and objective events which means the con-
unction of M versus T and M versus U (M > T ∩ M > U), the direct contrast
f T versus M (T > M) and the direct contrast of U versus M (U > M). 

Because the fMRI design described above considered only M events
hat occurred consistently across the whole group (cf. Section 2.5.3 De-
ermination of group-consistent unit marks), one could argue that our
nalysis did not consider local peaks that could well indicate equally
ignificant agreement between subjects. For this reason, we created an-
ther design as a control, an additional GLM including a regressor for
ideo frame onset with a parametric modulator considering all individ-
al unit marks Mp ( parametric unit mark) . This parametric modulator
ndicated the continuous moment-by-moment fluctuation of unit mark-
ng responses of all subjects (number of unit marking responses relative
o number of participants, e.g. 5/31, 2/31 and so forth) instead of bina-
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ized Ms and nMs, and replaced the regressors video, group-consistent
nit mark in the test-retest session (M) and no unit mark in the test-
etest session (nM). We then generated t -contrasts for Mp, as well as for
he other contrasts of interest to control for the impact of modeling Ms
arametrically, including T versus nTU, U versus nTU and TU versus
TU. 

For all contrasts, we applied explicit gray matter masking on the
rst level. Therefore, we smoothed the individual normalized gray
atter image at 8 mm FWHM and created a binary mask with a

hreshold of 0.2 using SPM12, as proposed by Jonathan Erik Peelle
 http://jpeelle.net/mri/misc/creating_explicit_mask.html ). For second-
evel whole-brain analyses, false discovery rate (FDR) correction at p
 .005 peak level and a cluster extent threshold of 15 voxels was
pplied. Activity patterns were visualized using MRIcroGL 3D visual-
zation software (McCausland Center for Brain Imaging, University of
outh Carolina, USA). Unthresholded statistical maps have been up-
oaded to NeuroVault.org ( Gorgolewski et al., 2015 ) and are available
t https://neurovault.org/collections/8736 . 

. Results 

.1. Behavioral results 

.1.1. Intra-individual retest reliability of unit marking responses 

Regarding single-subject level retest reliability, on average 62.99%
ere consistent responses (i.e., the test response matched the retest

esponse in time) ranging between the participants from minimally
3.73% to maximally 87.56% ( SD = 9.13). The individual consistency
riterion c i that defined the width of the time window around the retest
esponse individually for each participant was minimum 4.6 frames (i.e.,
200 ms), median 8.5 frames (i.e., ∼370 ms) and set to a global maxi-
um c g of 13 frames (i.e., ∼565 ms), i.e., the rounded up upper bound

f the 95% CI of the individual criteria (95% CI [7.98, 12.36]). Impor-
antly, the consistency of the participants’ unit marking behavior was
ignificantly better than random button presses ( t (30) = 10.6, 95%-CI
17.11,25.24], p < .001, d = 1.91, two-sided) . In sum, human unit mark-
ng was intra-individually consistent across the test-retest sessions. 

.1.2. Retest reliability of unit marking responses at the group level 

Correspondingly, between-subjects unit marking behavior was con-
istent, as revealed by a significant correlation between group-based
est-retest segmentation performance. Correlations testing the group
evel retest reliability yielded a mean correlation of test and retest
moothed time series of frame values per video of r z (292) = 0.55
 r min = 0.19, r max = 0.86; each individual correlation per video being
ignificant, all p < = 0.04). 

.1.3. Determination of group-consistent unit marks 

The frame with the maximum frame value in a video that rep-
esents the maximum agreement between participants was taken as
roup-consistent M. On average this maximum frame value was 8.05
 SD = 1.82) ranging from 5 to 14. All maximum frame values were at
east two standard deviations above the mean frame value of the respec-
ive video, which is in line with previous approaches ( Schubotz et al.,
012 ). The maximum frame values resulting from simulated random
nit markings ranged on average from 5.70 to 5.87 which was clearly
elow 8.04. In none of the simulated data sets were the maximum
rame values two standard deviations above the respective video mean.
his suggests that the subjects did not segment the videos randomly.
he number of Ms per video on group level ranged from 1.0 to 4.0
ith a mean of 1.2 ( SD = 0.45, n = 294) and was significantly lower
 t (586) = 67.2, 95%-CI [ − 4.33, − 4.08], p < .001, d = 5.55, two-sided )
han the number of TUs per video that ranged from three to seven
 M = 5.4, SD = 0.97, n = 294). On single-subject level, the average num-
er of individual test-retest consistent unit marking responses per video
8 
anged from 0.7 to 1.8 with a mean of 1.3 ( SD = 0.21, n = 294). Im-
ortantly, the number of individually consistent unit marking responses
er action significantly correlated with the number of TUs per action
 r (292) = 0.52, p < .001), pointing to a systematic relationship between
he number of Ms and TUs. 

.1.4. Temporal relationship between Ms and TUs 

With regard to the temporal relation between Ms and TUs, for about
ne third (28.3%) of the Ms, the time lag to the next TU was maximally
wo frames, i.e., up to ± 130 ms. This coincidence rate was higher than
he coincidence rate generated by random unit marks ( t (9) = − 4.0, 95%-
I [23.23,26.88], p = .003, d = 1.27, two-sided ). Accordingly, Ms were
ystematically delivered in relation to TUs which was in line with our
xpectation. 

Regarding the temporal relationship of Ms and their closest TUs on
acroscopic level, we found that Ms followed TUs with a mean latency

f 6.2 frames ( SD = 4.5; i.e., 268 ± 195 ms) and preceded TUs with
 mean latency of 4.5 frames ( SD = 3.4; i.e., 196 ± 147 ms). More-
ver, we found the majority (73%) of Ms to follow a TU; among these
ases, there was a bias towards following a touching event (45%) vs.
ollowing an untouching event (28%). Ms that preceded the closest TU
22%) mostly did so for untouching events (17%) but rarely for touch-
ng (5%). The exact temporal distribution of pre-M and post-M objec-
ive events differentiated for touching and untouching revealed that if
he closest TU to an M was a touching event, it mostly preceded the M
 Median = − 5 frames or ∼217 ms). In cases where the closest TU to an
 was an untouching event, its likelihood of occurrence peaked closer

o the M ( Median = − 2 frames or ∼87 ms). Furthermore, the disper-
ion for touching events ( SD = 5.5) was descriptively smaller than for
ntouching events ( SD = 6.0). Examining the likelihood of occurrence
f close-M touching and close-M untouching events separately ( Fig. 4 ),
his pattern became even clearer. Close-M touching events more sharply
receded the M ( Median = − 6, SD = 13.3) whereas close-M untouching
vents more widely scattered around Ms with a slight precedence bias
 Median = − 2, SD = 17.3). These findings suggest that Ms often followed
 T or scattered around a U event. 

.1.5. Sequential TU motifs typically embedding Ms 

A major goal of our study was to identify stimulus-based (objective)
easons for reporting an event boundary. Thus, our approach was to
xamine the systematic relationship between touching and untouching
n the one hand and Ms on the other. To test that this relationship
as not random, we tested whether the frequency of an M-embedding
U scheme (TU-TU-M-TU) was significantly different from its purely
tochastic occurrence probability (independent of its cooccurrence with
n M) in the experiment. The analysis of the TU-TU-TU sequential
riplets with regard to their embedding Ms revealed that of all possi-
le TU-TU-M-TU event schemes, some were more likely to embed an M
han others, and these were T-U-M-TU (i.e., first a T, then a U, then an
, and then either a T or a U) and TU-T-M-U (i.e., either a T or U at

he beginning and then a T, an M and a U) sequences. Thus, most of
he Ms (80%) coincided with a touching-untouching (T-U) motif (either
-U-M or T-M-U) within these triplets. This highlights the relevance of
-U motifs, where Ms occur either between T and U (T-M-U) or after
-U (T-U-M). Importantly, the proportion of triplets embedding an M
ignificantly differed from the general likelihood of occurrence of these
riplets ( 𝜒2 (6) = 67.03, p < .001, Cramer’s V = 0.46, n = 314). Post
oc single cell tests showed that the triplets U-T-U ( 𝜒2 (1) = 28.55, p <

001, Cramer’s V = 0.30, n = 314) and T-U-U ( 𝜒2 (1) = 12.32, p = .003,
ramer’s V = 0.20, n = 314) embedded Ms more frequently than ex-
ected and the triplet T-U-T ( 𝜒2 (1) = 38.17, p < .001, Cramer’s V = 0.35,
 = 314) less frequently than expected, based on the general likelihood
f occurrence of these triplets. See Supplementary Table 2 for the ob-
erved and expected numbers. Thirty-six Ms did not have two TU events
efore and one TU event after it such that they were not included in the

http://jpeelle.net/mri/misc/creating_explicit_mask.html
https://neurovault.org/collections/8736
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Fig. 4. Likelihood of occurrence of M-close touching events and M-close untouching events; the solid red line indicates the point in time where participants delivered 

a response for unit markings in the test-retest sessions (M), the lower x-axis shows the temporal distance of the events to M in frames and the upper x-axis additionally 

gives milliseconds for orientation. 

Fig. 5. Touching (T) and untouching (U) events as determined by computer vision for two exemplary object manipulation videos, and corresponding unit marks (M) 

delivered by participants. Single frame images are shown for all identified T and U events, with frame numbers given in the downright corner of the respective image. 

X-axes show Ms delivered relative to TU events (i.e., distances between TU events are warped and Ms are plotted according to their proportional timing between 

two events); S = Start, U = Untouching, T = Touching, E = End. A) “Turning calculator ” action with Ms on the upper x-axis in red and Ms for the other three objects 

(i.e., an egg timer, a mug, a bottle) being turned on the lower three x-axes in gray. The horizontal bar above the single frame images shows the actual temporal 

distribution of the TU events across the action video in milliseconds as also given in the frame numbers (1 frame lasted approximately 43.5 ms). B) Correspondingly, 

“putting cup on top ” action showing the Ms for the cup-using action on the upper x-axis in red and the Ms for the other three objects being put on top (i.e., two 

packs of playing cards, the lid of a tea tin, the lid of a container) on the lower three x-axes in gray. 

9 
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Fig. 6. Functional MRI activation at p < .005, peak-level FDR-corrected, for the main contrasts of post-fMRI human-determined unit marks (M > nM, red), objec- 

tive touching events (T > nTU, blue) and objective untouching events (U > nTU, green). The overlap of the activation of touching and untouching in the LG/CUN 

region is shown additively in cyan. PMd = dorsal premotor cortex, dAI = dorsal anterior insula, PHG = parahippocampal gyrus, IFJ = inferior frontal junc- 

tion, SPL = superior parietal lobule, LG = lingual gyrus, CUN = cuneus, LOC = lateral occipital cortex, hMT = motion area, ACC = anterior cingulate cortex, 

aIPS = anterior inferior parietal sulcus, SMG = supramarginal gyrus. Unthresholded statistical maps have been uploaded to NeuroVault.org and are available at 

https://neurovault.org/collections/8736 . 
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nalysis of sequential motifs. Fig. 5 shows the distribution of Ms rela-
ive to TU events exemplified by two object manipulations. Please note
hat the delay between events is displayed in a warped fashion and does
ot show the temporal distribution of the TU events in the course of the
ction video. In sum, our results showed that Ms coincided with a T-U
otif disproportionately often, i.e., significantly more often than would
ave been expected based on their frequency of occurrence. We can
onclude from these findings that people usually locate action bound-
ries exactly where a touching-untouching motif occurs in contrast to,
or instance, untouching-untouching sequences. 

.1.6. Action phases typically embedding Ms 

As 80% of the Ms appeared in either T-U-M or T-M-U, we had a closer
ook at T-U-X sequences (where X stands for either T, U or the end of
he video) embedding an M either in the first or in the second phase.
he respective video content analysis of the time between T-U and U-X
evealed that the observed action phases embedding an M significantly
iffered from the general likelihood of occurrence of these action phases
 𝜒2 (6) = 89.16, p < .001, Cramer’s V = 0.57, n = 279) (Supplementary
able 3). Post hoc single cell tests showed that Ms were more frequently
han expected placed in phases of object manipulation ( 𝜒2 (1) = 34.72,
 < .001, Cramer’s V = 0.35, n = 279) and at the start of object trans-
ort ( 𝜒2 (1) = 34.16, p < .001, Cramer’s V = 0.35, n = 279) while be-
ng less frequently than expected placed in phases of hand transport
 𝜒2 (1) = 14.81, p < .001, Cramer’s V = 0.23, n = 279), object transport
 𝜒2 (1) = 9.91, p = .012, Cramer’s V = 0.19, n = 279) and at the end of
bject transport ( 𝜒2 (1) = 13.60, p = .002, Cramer’s V = 0.22, n = 279).
verall, the only action phases in which subjects emitted significantly
ore Ms than statistically expected were during object manipulation

nd at the beginning of object transport. 
Together, this pattern of results clearly shows a systematic temporal

elationship between TUs and M. It suggests that participants pressed
he button for action segmentation in response to sequential T-U motifs
hat indicate object manipulation or the start of object transport. Still,
here were many more TUs than Ms, and consequently, the majority of
Us did not relate to an M. This allowed a clear dissociation of the neural
rocesses associated with TU analysis and segmentation decisions. 
10 
.2. fMRI results 

In order to neither over- nor underestimate differences between T, U
nd M events, we considered each event in contrast to unspecific points
n time between them (nTU and nM) as well as the conjunctions of direct
ontrasts for M (M > T ∩ M > U) and direct contrasts for T (T > M) and U
U > M). Hence, our discussion is restricted to brain activity uniquely
bserved for each of these three event classes. 

To identify the network associated with unit marking in post-fMRI
est-retesting, we ran a whole-brain analysis of the contrast M > nM
 Fig. 6 ) which revealed significant bilateral activation in the lateral oc-
ipital cortex (LOC) comprising hMT (see e.g. Tootell et al., 1995 , report-
ng similar peak coordinates; Table 2), the superior parietal lobule (SPL)
nd significant unilateral activation in the left fusiform gyrus (FG), right
nterior inferior parietal sulcus (aIPS) and right supramarginal gyrus
SMG). 

To address the brain response to the objective touching and untouch-
ng events, we calculated the contrast TU > nTU that yielded a bilateral
ctivation cluster including the cuneus, lingual gyri and right parahip-
ocampal gyrus. This cluster had no overlap with the pattern found for
nit marks (M > nM). 

Examining TU events in more detail, we separately computed T > nTU
nd U > nTU. The brain response to touching events (T > nTU; Fig. 6 )
howed a bilateral activity pattern in secondary visual areas span-
ing lingual gyri and cuneus. The brain response to untouching events
U > nTU; Fig. 6 ) showed a more extended network going beyond the
luster of lingual gyrus and cuneus also identified for T > nTU. This un-
ouching specific activity comprised parahippocampal gyrus (PHG), the
arieto-occipital fissure, dorsal premotor cortex (PMd), right anterior
FS (aSFS), left inferior frontal junction (IFJ), the right dorsal anterior
ingulate cortex (dACC), and dorsal anterior insula (aAI). See Table 1
or the peak maxima of the described main contrasts. 

The additionally calculated direct contrasts between human-
etermined and objective events validated the specificity of the above
ndings (Supplementary Figure 2). The conjunction of M > T ∩ M > U

argely yielded the same pattern as M > nM with LOC/hMT, SPL,
G, aIPS/SMG, and furthermore found the ventral premotor cortex

https://neurovault.org/collections/8736
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Table 1 

Maxima of activation from the main contrasts of the second-level whole-brain analyses at 

p < 0.005 peak-level FDR-corrected. 

Macroanatomical H Cluster 

Extent 

t -value MNI Coordinates 

Location x y z 

M > nM 

Lateral occipital cortex / human motion area L 335 9.30 − 48 − 73 − 4 
R 452 9.25 51 − 64 − 7 

Fusiform gyrus L 40 6.63 − 48 − 52 − 19 

Superior parietal lobule L 126 6.84 − 24 − 52 68 

R 102 7.02 18 − 55 68 

Anterior inferior parietal sulcus R 27 5.24 54 − 25 50 

Supramarginal gyrus R 44 4.74 57 − 25 20 

TU > nTU 

Cuneus L 1491 8.56 − 9 − 97 17 

R 8.45 15 − 94 29 

Lingual gyrus L 7.58 − 6 − 79 − 1 
R 5.80 12 − 79 − 4 

Parahippocampal gyrus R 4.88 30 − 37 − 16 

T > nTU 

Lingual gyrus L 577 7.82 − 9 − 76 − 1 
R 6.43 12 − 76 − 4 

Cuneus L 6.97 − 9 − 88 23 

R 6.50 9 − 76 26 

U > nTU 

Lingual gyrus L 1522 9.82 − 24 − 73 − 4 
R 8.90 33 − 52 − 7 

Cuneus L 8.74 − 9 − 100 17 

R 8.38 15 − 94 29 

Parieto-occipital fissure L 68 5.15 − 21 − 58 14 

Parahippocampal gyrus L 6.23 − 30 − 34 − 16 

R 5.66 30 − 31 − 16 

Dorsal premotor cortex L 204 7.39 − 24 2 53 

R 174 6.54 24 2 50 

Anterior superior frontal sulcus R 20 5.07 27 35 29 

Inferior frontal junction L 27 5.22 − 36 5 29 

Dorsal anterior insula L 31 6.03 − 27 23 − 1 
R 74 6.22 30 23 5 

Dorsal anterior cingulate cortex R 38 5.73 12 20 32 

Note . H = Hemisphere, MNI = Montreal Neurological Institute, L = Left, R = Right, M = Unit 

mark, nM = non-unit mark, T = touching event, U = untouching event, nTU = non- 

touching/untouching event. 
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PMv) / inferior frontal gyrus (IFG) and mid-insula to be activated.
he direct contrast of T > M revealed the same pattern as T > nTU includ-

ng bilateral lingual gyrus and cuneus. Finally, the direct contrast of
 > M largely reflected the above referred findings for U > nTU yielding
uneus activation, the parieto-occipital fissure, PHG, PMd, aSFS, dAI,
nd ACC. See Supplementary Table 4 for the peak maxima of these direct
ontrasts. 

The additionally calculated parametric GLM, considering all indi-
idual unit marking responses as a cumulative parametric regressor Mp,
eplicated and validated the specificity of the above findings. Investigat-
ng unit marks as parametric modulator based on the time series of the
ooled unit marking responses revealed the same pattern as M > nM with
OC/hMT, FG, SPL, SMG, and furthermore yielded additional activity in
ngular gyrus, dorsal premotor cortex, and left IFG. All other contrasts
TU > nTU, T > nTU, and U > nTU) remained unchanged (see Supplemen-
ary Table 5 for the peak maxima of all contrasts from this GLM). 

To summarize the fMRI results, we found distinct activity patterns
or touching and untouching events which both clearly deviated from
he network activated by the (independently tested) unit mark process-
ng. Touching events’ activity pattern comprised secondary visual acti-
ation and untouching events’ activity pattern extended this network to
arahippocampal, dorsal prefrontal, medial frontal and insular regions.
n contrast, unit marks (as determined in the post-fMRI test-retest ses-
ions) revealed increased activity of LOC, FG and parietal regions. The
11 
irect contrasts between Ms, Ts and Us corroborated differentiability of
hese events. 

. Discussion 

The present study used computer vision methods to investigate
hether human action segmentation behavior can be traced to objec-

ifiable events of touching and untouching and fMRI to investigate the
eural basis for processing these events. Participants watched videos of
bject-directed actions in an fMRI session, and subsequently two more
imes in a behavioral test-retest regime to ensure reliability of the de-
ermined Ms and to model brain activity at M. In the same set of action
ideos, the occurrences of touching and untouching events were deter-
ined based on a computer vision algorithm. Our results indicate that

ouching-untouching motifs can predict human action segmentation and
re processed in distinct networks. Both behavioral effects as well as
OLD responses were highly informative with regard to the question
hether touching and untouching events can help to objectify human
ction segmentation, as will be discussed in the following. 

Considering first the behavioral results, the test-retest procedure fol-
owing the fMRI session revealed that humans’ action segmentations
ere relatively consistent both on the individual as on the group level

cf. Schubotz et al., 2012 ). Moreover, considering the points in time
here participants agreed on unit marks, we found a consistent relation-
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hip to computer vision-based touching and untouching events. Specifi-
ally, the majority of Ms systematically coincided with a T-U motif, such
hat Ms followed a touching event and largely co-occurred with a sub-
equent untouching event. Thus, the most frequently observed motifs
ere T-U-M (about 27% of the Ms) and T-M-U (about 53% of the Ms).
he temporal dispersion of these events in relation to Ms suggested that
s appeared to be often triggered by a touching event. Thus, the touch-

ng events’ frequency distribution peaked rather sharply about 260 ms
efore the M; the untouching events’ frequency distribution showed a
roader dispersion in time, scattering around the Ms with a mild peak
round 90 ms before the M. 

It is important to note that T-U sequences were a necessary but not
 sufficient condition to bring about an M. That is, if we observed an M,
t coincided in most cases (80%) with a T-U motif; but for most (69%)
f the T-U motifs, no M was recorded (see Supplementary Table 2). The
verall base rate of triplets containing the T-U motif was the highest
mong all existing triplets, with UTU (41.2%) and TUT (42.4%) being
specially frequent. Thus, if participants set a unit mark, they mostly
id so in response to a touching event announcing an untouching event,
ut in many other cases, touching events preceding an untouching event
id not trigger a unit marking response. Hence, we can explain the cause
or action segmentation in most cases, but also found that humans select
ne third of these triggering events and disregarded the rest. Note, that
s could be driven only by T and the relation to U could result from the

ntervals between T and U. To further investigate this possibility, our
xplorative findings need to be explicitly tested in future research. 

The video content analysis of action phases further elucidated the
ifference between T-U motifs triggering an M and those that did not. It
evealed that, in the first place, Ms announced the object manipulation
nd the start of the object transport. Less frequently, Ms were placed
uring the hand transport, during the object transport, and at the end of
he object transport. Thus, participants segmented actions particularly
uring an object manipulation and at the onset of an object transport.
hese two phases of the observed actions were the only ones that were
arked more frequently, almost twice as often, than would have been

tatistically likely based on the general frequency of occurrence. No-
ably, object-directed manipulation actions always - and only - consist
f two types of phases in variable number and order, i.e., transport and
anipulation. Our findings show that at least 80% of human action seg-
entations can be directly related to the beginning of a transport or the
anipulation. Against the backdrop of these novel behavioral findings,
e investigated the neural networks associated with the processing of

ouching and untouching events and their relation to human-determined
ction segmentation. 

Our behavioral findings suggested that touching events are impor-
ant anchor points of action segmentation, resulting in unit marks dis-
ributed around the subsequent untouching event. Touching events
hemselves, unless they involve grabbing very specific tools in clearly
efined contexts, are hardly informative in terms of updating current
xpectations. Rather, they are mostly points of least predictability of
ction, as movement comes to a brief halt. Relative to the transport
nd relative to the phase of manipulation, touchings are therefore more
ncertain as the end point of a movement. In our videos, at the time
f touching, the now expected manipulation was relatively clearly pre-
ictable only in some videos (put cup on saucer), in others not (turn cal-
ulator). Such points of lowest predictability were proposed to trigger
 visual error signal, initiating upstream areas’ updating of the predic-
ive model ( Zacks et al., 2011 ). Fitting this notion, we found increased
econdary visual cortex activation comprising cuneus and lingual
yrus pointing to increased exploratory vision and visual gain ( Shipp,
016 ). 

As a counterpart to touching, untouching events terminated the
alted movement at touching events and signaled the beginning of
he next goal-directed movement. Here, theoretically, competing pre-
ictions about potentially upcoming options are retrieved, compared
ith the actually observed movement at untouching events, and finally
12 
isambiguate the observer’s expectations. Brain activity at untouching
vents appeared to reflect these potential processes. On the one hand,
ctivity increased in the anterior dorsal insula (dAI) alerting to a be-
aviorally important event ( Han et al., 2019 ; Tamber-Rosenau et al.,
018 ), dorsal anterior cingulate cortex (dACC), which is engaged in
aliency detection and attention switching ( Han et al., 2019 ), and fi-
ally the inferior frontal junction (IFJ) proposed to subserve transient,
ynamic attentional reconfiguration ( Sundermann and Pfleiderer, 2012 ;
u, 2014 ). On the other hand, two components that we formerly iden-

ified for action segmentation ( Schubotz et al., 2012 ), superior frontal
ulcus (SFS) and parahippocampal gyrus (PHG), could now be objec-
ively attributed to the processing of untouching. SFS/PMd serve the se-
ection between alternative competing motor acts based on conditional
perations ( Petrides, 2005 ; Tamber-Rosenau et al., 2011 ). In support
f this view, PHG engagement is reliably seen in tasks where contex-
ual associative information is encoded in or retrieved from memory
 Aminoff et al., 2013 ) and is sensitive to stochastic structure of observed
vents ( Amso et al., 2005 ; Schiffer et al., 2013a ; Turk-Browne et al.,
010 ). Parahippocampal activity extended along the anterior-posterior
xis, comprising both posterior and anterior segments which have been
elated to visuospatial perception and contextual mnemonic processes,
espectively ( Baumann and Mattingley, 2016 ). The concurrent engage-
ent of SFS and PHG at untouching events could reflect a comparison

etween internal model based predicted and actually perceived state
hanges ( Beudel et al., 2016 ). Summarizing these findings, alertness sig-
ificantly increases at untouching events, initiating the attentive inspec-
ion of the precise hand movement to update expectations and re-focus
ttention for the upcoming action step. 

Object manipulation and object transport unfolding after touching
ignified a new action segment, and were mostly assigned a unit marker
esponse. Considering brain activity arising at the moment in which par-
icipants – in the test/retest sessions following the fMRI experiment –
ould press the response button to indicate a meaningful action seg-
ent, we found strong activation restricted to three areas compris-

ng SPL, IPL, and lateral occipitotemporal cortex. The latter two ar-
as indicate processing of objects, especially in the visuotactile domain,
nd their manipulation ( Creem-Regehr, 2009 ; Grill-Spector et al., 2001 ;
ingnau and Downing, 2015 ), while SPL is involved in vision for ac-
ion ( Gamberini et al., 2020 ) and, particularly relevant for the present
ndings, in controlling of all phases of prehension during reach-to-grasp
ctions ( Fattori et al., 2017 ) as well as observation of reaching/grasping
uring object manipulation ( Wurm et al., 2017 ). Against the backdrop
f the functional profiles of IPL, SPL and LOC, it shows that post-fMRI
nit marking coincides with the posterior brain being massively tuned
o the analysis of the unfolding step in object manipulation. 

Using fMRI and computer vision to investigate human action seg-
entation was motivated by the suggestion that relying solely on the

raditional approach of unit marking behavior does not necessarily
ell us which segmental structure the brain processes when we ob-
erved actions. Obviously, the brain’s ability to recognize and learn
tatistical structures in stimuli need not be accompanied by our abil-
ty to report these structures explicitly ( Fiser et al., 2010 ; Perruchet and
acton, 2006 ). The present findings corroborate our assumption, show-
ng that individuals’ unit marker responses were tightly bound to T-U
otifs, whereas only one third of all T-U motifs triggered a unit marking

esponse. These T-U motifs predominantly indicated object manipula-
ion and the start of object transport. Brain responses for objective and
ubjective events were clearly distinguishable, and the functional pro-
les of the activated areas suggested that these events were meaningful
nd can be interpreted in the context of model updating. Untouching
vents, and not only those which specifically follow a touching event in
 T-U motif, denote action segments as processed by the brain more ob-
ectively than human unit marking behavior can do. While to the brain,
ntouching is informative with regard to the unfolding movement in ei-
her case, individuals focused on the moment in which the hand grasped
he object to initiate the object manipulation or transport, while occa-
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ions for untouching, such as hand-to-object transport, were not consid-
red. 

Touching and untouching relations can be reliably detected by com-
uter vision without any need to (train to) identify specific objects (e.g.,
 pencil) and relate them to typical kinds of manipulation (e.g., writ-
ng, drawing). Event segmentation has been shown to be fundamen-
al to how children make sense of the world ( Levine et al., 2019 ) and,
peculatively, detecting touching relations could be a very simple way
or the baby brain to analyze structure in actions, and learn to rec-
gnize recurrent meaningful units way before knowing what we typ-
cally do with objects. However, we also know that everyday objects
hat are familiar to us are strongly associated with certain actions, and
his knowledge efficiently modulates the observer’s expectation of an
ction ( El-Sourani et al., 2019 , 2018 ; Gupta et al., 2007 ; Hrka ć et al.,
015 ; Schubotz et al., 2014 ). Therefore, it would be very important and
xciting to investigate what influence this object knowledge has on the
egmentation of observed actions. 

An important limitation to the generalizability of our results and in-
erpretation concerns the nature of the stimuli used. Our videos were
hort, discrete, and consisted only of an actress at a table manipulating
n object. In contrast, action perception in real life occurs in continu-
us and more complex contexts. We know from previous studies that
he space in which an action is observed ( Wurm et al., 2012 ; Wurm and
chubotz, 2012 ), the identity of the actor ( Hrka ć et al., 2013 ), and con-
extual objects ( El-Sourani et al., 2019 , 2018 ) all have an impact on the
rain activity of the action observer. Whether our results are transfer-
ble to realistic situations therefore needs to be tested in further studies
ith more realistic, ecologically valid stimuli. 

.1. Conclusion 

Whether we observe actions, listen to music, or hear speech, we
asily recognize structure in continuous stimuli. In the present study,
sing behavioral measures and brain activity, we identified sequential
ouching relations as a reliable and objective basis for segmenting ob-
erved object manipulation. Our findings offer interesting potential ap-
lications, for instance, in human-machine interaction, by allowing the
achine to make reliable predictions about the way people understand

ction structures. This information can also help optimizing training
rotocols used to restore function in stroke patients. 
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