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Abstract

Cued sensory input occasionally fails to immediately ensue its respective trig-

ger. Given that our environments are rich in sensory cues, we often end up

processing other contextually relevant information in the meantime. The

experimental design of the present study allowed us to investigate how such

temporal delays and visual interferences may impact anticipatory processes.

Thirty-four participants were trained to remember an individualised set of

eight paired-up faces. These paired-up faces were presented pseudorandomly

in sequences of unpaired face images. To keep participants engaged through-

out the electroencephalography study, they were instructed to classify each

face image, according to its sex, as fast as possible without compromising accu-

racy. We observed dissimilar modulations in alpha and beta power between

the 6-s timeframe encompassing the onsets of predictive and expected images

(temporal delay block) and the 6-s timeframe encompassing the predictive,

interference and expected images (visual interference block). Furthermore, an

expectation-facilitated reduction of the face-sensitive N170 component was

only observed if an anticipated face image directly followed its corresponding

predictive counterpart. This effect was no longer evident when the expected

face was preceded by a distracting face image. Regardless of the block type,

behavioural measures confirmed that anticipated faces were classified signifi-

cantly faster and with fewer erroneous responses than faces not foretold by a

predictive face. Collectively, these results demonstrate that whilst the brain

continuously adjusts internal hierarchical generative models to account for

temporal delays in stimulus onset and visual interferences, the higher levels,

and subsequent predictions, fundamental for expectation-facilitated behav-

iours remain intact.
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1 | INTRODUCTION

The sensory triggers constituting our natural surround-
ings are exceedingly fluid and common to rapidly change
and develop. Our brains deal with this continual trans-
mission of sensory material by means of filtering out rele-
vant and dismissing irrelevant information (Ligeza
et al., 2017; van Moorselaar et al., 2020). To achieve this,
the current context plays a crucial role in assisting the
brain to compartmentalise which sensory data to attend
to and which to suppress (Kelly et al., 2006; Limanowski
et al., 2020; Rihs et al., 2007; Worden et al., 2000). The
contextual setting is therefore pivotal for narrowing down
and selecting the most ‘newsworthy’ cues to focus on in
order to adapt internal predictive models and behave
accordingly. For instance, the sound of an ambulance
siren informs us to vigilantly take in our surroundings in
case we must make way for the onrushing vehicle. The
notion that cues such as the latter evoke an array of inter-
nal predictions to optimise respective behaviours is well
established (Clark, 2013; Friston, 2005). Within this pre-
dictive processing framework, predictions regarding
upcoming events are derived from prior knowledge and
are propagated top-down within sensory hierarchies.
Incoming sensory information, on the other hand, is
mediated in a bottom-up motion. These complementary
pathways are distinguishable by distinct neural signa-
tures, whereby top-down processes are facilitated by
alpha/beta frequency ranges (Arnal & Giraud, 2012;
Bastos et al., 2015) and bottom-up processes by gamma
frequencies (Bastos et al., 2015; also see Kaiser &
Lutzenberger, 2005).

Apart from benefiting behavioural performance, hav-
ing access to prior knowledge downregulates the amount
of cognitive resources necessary to process a given stimu-
lus (Blom et al., 2020; Klimesch, 2011). More precisely,
the brain can draw information from these pre-activated
stimulus-specific neural representations ahead of their
respective afferent sensory input. Upon stimulus onset,
fewer cognitive resources are required to process this
already expected sensory input. In turn, neural activity
such as gamma-facilitated bottom-up processes can be
minimised, leading to a subsequent reduction in neural
expenses (Bauer et al., 2014; also see Gordon et al., 2019).
Diminished neural activity in response to a given target
can, thus, be seen as a marker reflecting predictiveness.
For instance, a reduction in the face-sensitive event-
related potential, N170, can indicate if a face was
expected and/or familiar (Johnston et al., 2016; Ran
et al., 2014). A growing body of evidence has revealed
that this pre-activation of already existing knowledge is
associated with pre-stimulus enhancements in alpha/beta
power (Brodski-Guerniero et al., 2017; Mayer

et al., 2016). In a previous study, we even observed that
this enhancement in low-frequency power stretched
throughout the entire interstimulus interval (ISI)
between a cue and its implicitly expected target (Roehe
et al., 2021). In a natural setting, however, it is relatively
unlikely that a cue is immediately pursued by a single,
specific anticipated event. More commonly, we are left to
process various sensory input before the anticipated
event occurs. Revisiting the ambulance scenario men-
tioned previously, sometimes a few seconds go by after
first hearing the siren in which we are hastily scanning
our surroundings for flashing blue lights. In these cases,
we end up processing several afferent sensory inputs
before glimpsing the anticipated event. To the best of our
knowledge, the notion of how and to what extent contex-
tually relevant interferences impact pre-activated expec-
tations remains underexplored.

The central aim of the present electroencephalography
(EEG) study was, therefore, to investigate how different
‘interruptions’, such as a delay in stimulus onset and dis-
tracting visual information, would impact the availability
of cued prior knowledge and subsequent sensory predic-
tions. Prior to the EEG study, participants were extensively
trained to learn the identity of eight face images that were
sorted into four customised pairs and were pseudoran-
domly embedded in sequences of unpaired faces. To
remain engaged throughout the EEG experiment, the par-
ticipants were instructed to classify all occurring images as
either female or male faces. To incorporate both a delay
condition and an interference condition, we adapted our
previous experimental design (Roehe et al., 2021) by
(i) elongating the ISI between two paired-up face images
to generate a delayed temporal onset of the expected
image, and (ii) inserting a contextually relevant face image
in between the paired-up images to act as a visual interfer-
ence. These temporal delay and visual interference blocks
were presented in alternate succession.

Foremost, we expected to replicate findings indicating
that expectations boost behavioural responses (Ran
et al., 2014; Turk-Browne et al., 2010). In line with
previous findings, we hypothesised that early access to a
neural template of the anticipated face would permit
bottom-up processes to be downregulated and, hence,
result in a diminished N170 response for expected images
(Johnston et al., 2016; Ran et al., 2014; Roehe
et al., 2021). On the contrary, because the interference
images were contextually relevant, that is, required a spe-
cific behavioural response and invariably occurred amidst
the cue and anticipated images, we did not expect neural
signatures of distractor suppression for these images
(Kelly et al., 2006). This foregoing assumption was based
on previous research reporting that distractor interfer-
ence was greatly reduced when their presentation was

2 ROEHE ET AL.

 14609568, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/ejn.16118 by C

ochrane G
erm

any, W
iley O

nline Library on [09/08/2023]. See the Term
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline Library for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons License



highly predictable in terms of spatial and temporal occur-
rences (van Moorselaar et al., 2020). Ultimately, we used
time-frequency analyses to investigate to what extent a
temporal delay in stimulus onset and visual inferences
would influence the augmentation in pre-stimulus alpha/
beta power and the predictive impact of the cueing stimu-
lus. Succinctly, we observed that the brain shifts between
prioritising neural states favourable for either top-down
or bottom-up processes. These fluctuations in alpha/beta
power conveyed different spectral patterns depending on
whether a temporal delay in stimulus onset occurred or
an interfering face image was presented in between the
predictive and expected images. Thus, the brain seems to
adapt internal predictive models to account for temporal
delays in sensory input and visual interferences. Intrigu-
ingly, different levels within this hierarchical model seem
to be fine-tuned to varying degrees so that contextually
relevant predictions can continue to aid expectation-
facilitated behavioural responses.

2 | MATERIALS AND METHODS

2.1 | Participants

A total of 37 participants took part in the study
(31 females; 21.57 ± 3.14 years of age [mean ± SD]) after
having signed informed consent based on the principles
expressed in the declaration of Helsinki. Two participants
had to be excluded because of excessive movement arte-
facts and one further participant because of extremely
delayed response times (3 SD from the mean). Subse-
quently, the final sample size consisted of 34 participants
(28 females; 21.62 ± 3.25 years of age [mean ± SD]). All
participants were right-handed as assessed by the
Edinburgh Handedness Inventory (Oldfield, 1971), had
no history of neurological and psychiatric disorders, and
reported (corrected-to-) normal visual acuity. The partici-
pants were either awarded class credits or were reim-
bursed (24 Euros) for their participation. The study was
approved by the Ethics Committee of the University of
Münster (Department of Psychology).

2.2 | Stimulus material and
experimental design

The participants were presented with sequences of
20 recurring neutral face images (10 female) chosen from
the Radboud Faces Database (RaFD; Langner
et al., 2010). To limit the amount of eye movement, all
images were scaled, using GIMP (GNU Image Manipula-
tion Program), so that salient facial features, that is, eye

and mouth regions, aligned across images (Blais
et al., 2008). Eight of these images (four male and four
female images) were sorted into four reoccurring pairs,
covering all possible paired-up combinations. Each indi-
vidual participant was assigned a unique set of four pairs
which were pseudorandomly presented within sequences
of randomly reoccurring unpaired images. The face
images (W = 9.5 cm, H = 14 cm) were depicted individu-
ally for 500 ms in the centre of a grey background (sub-
tending visual angles of approximately 9! vertically and
6! horizontally). The depiction of these face images was
immediately followed by a 2.5-s fixation period. A single
trial was, therefore, a total of 3 s in length.

The experimental design consisted of two types of
blocks, each occurring once during the training session
and twice during the EEG experiment. The blocks were
shown in an alternating order, commencing with the first
temporal delay block, and finishing with the second visual
interference block. During the temporal delay blocks, each
image was succeeded by an elongated fixation period of
an additional 3 s. Hence, the timeframe between the
onsets of two consecutive images was 6 s long (Figure 1).
In contrast, the timeframe between the onsets of two face
images in the visual interference blocks was only 3 s. The
hidden face pairs in the visual interference blocks were,
however, disjointed by the depiction of a randomly
selected unpaired face image (interference image). Similar
to the temporal delay blocks, the interval between the
paired images in the visual interference blocks was, subse-
quently, also 6 s in duration (Figure 1).

To balance the occurrences of each individual image,
every face image was repeated twice during each of the
four sequences making up a single temporal delay block.
After each sequence, a small break of 1 min (at most)
could be taken after which the next sequence would com-
mence automatically. A longer self-determined break
ensued upon completion of each block. With the addi-
tional 3-s fixation period within each trial, the temporal
delay blocks took approximately 16–19 min to complete,
depending on whether participants made use of the entire
1-min break after completing each sequence. For the
visual interference blocks, each image was repeated three
times. In this case, each unpaired image occurred twice as
a random and once as an interference image in each of the
four sequences of a single visual interference block. Each
visual interference block lasted approximately 12–15 min.
This meant that together the two temporal delay blocks
comprised 64 predictive, 64 expected, and 192 random tri-
als and the two visual interference blocks of 96 predictive,
96 expected, 96 interference, and 192 random trials.

The experiment was programmed and presented
using Presentation 18.1 (Neurobehavioral Systems, Dan
Francisco, CA, USA).
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2.3 | Task

Prior to starting the experiment, the participants were
shown four individual face images (two male and two
female faces) which they were asked to remember, as
these would each be paired-up with a specific face. The
participants then engaged in a classification task, in
which they were instructed to distinguish between male
and female faces as fast and as accurately as possible. All
images, regardless of their image category (predictive,
expected, interference or random), required a beha-
vioural response. In addition, the participants were
required to learn and remember the identity of the faces
which immediately pursued each of the four remembered
faces shown during the induction. For half of the partici-
pants, a left button press (left index finger) classified the
depicted face as a female face and a right button press
(right index finger) as a male face. This classification
arrangement was reversed for the other half of the partic-
ipants. At the end of each experiment (training and
EEG), the participants had to correctly identify each of
the four image pairs.

2.4 | Experimental procedure

The study took place on two consecutive days: a short
behavioural training session was scheduled for the first
day and the EEG experiment for the following day. The
training session allowed participants to become

accustomed to the task at hand and explicitly learn the
identity of the paired-up faces. During the 15-min beha-
vioural training, one temporal delay and visual interfer-
ence block was shown, each consisting of three
sequences. At the end of the experiment, the participants
had to correctly identify all four of their personally tai-
lored face pairs as a prerequisite to take part in the EEG
experiment the following day.

For the EEG experiment, the participants were com-
fortably seated in front of a response box and screen in a
dimly lit, electrically shielded EEG booth. The distance
between the seated participant and the screen measured
approximately 80 cm. Over the duration of approximately
an hour, two temporal delay and visual interference
blocks (each bearing four sequences) were shown in
alternating order. Like before, at the end of the EEG
experiment, the participants were asked to correctly clas-
sify the identity of their paired-up faces. At the end, a
general questionnaire was carried out inquiring about
participants’ wakefulness and awareness.

2.4.1 | EEG data acquisition and pre-
processing

Scalp EEG was recorded using Brain Products’ actiCAP
snap system, combined with the BrainVision Recorder
Software (Brain Products, Gilching, Germany). Sixty-two
Ag/AgCl-electrodes were distributed on the cap accord-
ing to the 10–20 system. Two further electrodes served as

F I GURE 1 Schematic illustrations
of the behavioural task and the
sequential pattern of face images
constituting the two types of blocks. The
colours of the frames mark different
event categories (blue: paired images;
green: elongated interstimulus interva;
light grey: interfering images).
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electrooculograms and were placed above and beside the
right eye to account for vertical and horizontal eye move-
ments, respectively. Electrodes at FCz and FPz served as
the online reference and ground, respectively, and were
disregarded from all following analyses. EEG data
were recorded at a sampling rate of 1 kHz, with an
applied online bandpass filter of .1–1000 Hz. Electrode
impendence was maintained to be below 10 kΩ.

Recorded EEG data were pre-processed using
MATLAB (R2017b) in combination with the EEGLAB
toolbox (version 14.1.1b; Delorme & Makeig, 2004). Raw
data were downsampled to 500 Hz before applying a But-
terworth bandpass filter (12 db/octave) with cutoffs at
.1 Hz and 30 Hz for the ERP data and .5 and 40 Hz for
the time-frequency (TF) data, respectively. For the ERP
analysis, continuous data were segregated into epochs
extending from "250 to 600 ms, locked to stimulus onset.
To segregate continuous data into epochs of 3750 s for
the TF analysis, artificial triggers had to be added to the
elongated timeframes separating each stimulus in
the temporal delay block. Here, the interval was 6000 ms
long instead of the 3000 ms in the visual interference
block. These artificial triggers were inserted 3000 ms after
each image onset, allowing all continuous data points to
be separated into 3750 ms epochs extending from "250
to 3500 ms. The Gratton plug-in for EEGLAB was then
applied to correct for ocular movement (Gratton
et al., 1983). Noisy channels were semi-automatically
inspected and interpolated if kurtosis criterion > 6. Of
the ERP data, a total of 1% of electrodes were interpo-
lated, whereas 3.4% of electrodes were interpolated of the
TF datasets. Artefacts were removed semi-automatically
with the criteria that trials were discarded if artefacts
exceeded an amplitude threshold of ± 75 μV or conveyed
fluctuations in voltage greater than 50 μV respective to
the previous sample point. Hereupon, trials were visually
inspected and removed if containing any residual arte-
facts. Out of the initial 1136 trials (per participant), a
mean number of 1081 trials remained of the ERP
datasets and 873 trials of the TF datasets. The number of
random trials was reduced to match the number of
predictive, interference, and expected trials of the ERP
datasets (temporal delay block: predictive trials = 61.15
± 2.15, expected trials = 61.82 ± 2.25, and random
trials = 64.12 ± .41; visual interference block: predictive
trials = 93.76 ± 2.92, expected trials = 93.32 ± 2.28, ran-
dom trials = 95.88 ± .69, interference trials = 93.21
± 2.53; [mean ± SD]) and of the TF datasets (temporal
delay block: predictive trials = 46.88 ± 8.24, expected
trials = 51.41 ± 7.01, random trials = 63.71 ± 1.71; visual
interference block: predictive trials = 78.21 ± 9.57,
expected trials = 81.03 ± 9.04, random trials = 84.09

± 10.29, interference trials = 79.79 ± 8.12). Datasets were
then re-referenced to a common average.

2.5 | Statistical analysis

2.5.1 | Behavioural analysis

Behavioural data were analysed using RStudio (version
3.6.0). For each individual participant, datasets were
trimmed so that reaction times (RT) 3 SD slower than the
sample’s mean were removed from all further analyses
(number of trials removed: 5.71 ± 11.70 [mean ± SD]).
For the RT analysis, any trials bearing missed or incorrect
responses were also removed. The number of trials for
each image category were then equalised; that is, the
number of random images was reduced to match
the number of predictive/interference/expected for each
block type (temporal delay block: n = 64 and visual inter-
ference block: n = 96). For the response time, an individ-
ual one-way, repeated measures analysis of variance
(ANOVA) was implemented for each of the two block
types. A Bonferroni correction was applied to all post hoc
comparisons. Given that the data for response accuracy
were not normally distributed, non-parametric Friedman
tests, along with post hoc Wilcoxon signed-rank tests,
were applied to analyse the percentage of correct
responses.

2.5.2 | ERP analysis

The ERP datasets were averaged across each image cate-
gory of interest (temporal delay: expected and random;
visual interference: expected, interference and random).
Given that the ERP analysis was conducted to investigate
the predictability of the different image types, the predic-
tive images were disregarded because of their confound-
ing informative, cue-like nature.

To measure the mean amplitude of the N170, the
mean voltage within the timeframe of 140–180 ms over
electrodes P5/P6 and P7/P8 was calculated relative to the
250 ms pre-stimulus baseline (Ran et al., 2014).
The mean amplitude was entered into a 2 # 2 repeated
measures ANOVA for the temporal delay block with fac-
tors hemisphere (left and right) and image type (expected
and random). For the visual interference block, a 2 # 3
repeated measures ANOVA was applied with factors
hemisphere (left and right) and image type (expected,
interference and random). Where applicable, the degrees
of freedom of the F-ratio were amended according to the
Greenhouse–Geisser method.
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2.5.3 | Time-frequency analysis

Spectral analyses were performed using MATLAB
(R2020b) and the Fieldtrip toolbox (Oostenveld
et al., 2011). To estimate spectral power, a fast Fourier
transform approach was applied to averaged trials. Here
a Hanning taper was used for our frequencies of interest
(2–30 Hz), using a 500-ms long sliding window which
moved in fixed steps of 50 ms and 1 Hz increments.

As for the statistical analyses, cluster-based permuta-
tion tests were used to assess the differences in low-
frequency power within the timeframe extending from
0 to 3000 ms (locked to stimulus onset) between the dif-
ferent image conditions within each block type. First,
time-frequency power was normalised by calculating the
raw differences in power estimates between the prede-
fined contrasts of interest, that is, normalised difference
expected vs random = (X " Y)/(X + Y) (Spaak et al., 2016).
This normalised data of our predefined region of interest
(O1/Oz/O2/PO7/PO8/PO4/PO3/POz) was then used for
all statistical analyses and to generate time-frequency
representations (Houshmand Chatroudi et al., 2021). For
each individual contrast, this normalised power was then
subjected to Monte Carlo randomisations using depen-
dent sample t-tests and k = 1000 permutations. Differ-
ences in power were deemed significant when a cluster
size exceeded the threshold (95th quantile) of the per-
muted sample. Applying the cluster-based method to the
permutation tests offers a robust way to control
the family-wise error rate associated with multiple com-
parisons (Cohen, 2014).

A data-driven, within-participants correlation was
carried out to assess the relationship between the coexist-
ing clusters, marking the immediate onset of the expected
(in comparison to random) faces of the visual interfer-
ence block (Figure 4i–j). For each participant (n = 34),
the normalised power of the two observed clusters was
averaged over channels, frequencies and time. The aver-
aged power of the beta suppression was then correlated
with the averaged power of the alpha enhancement.

3 | RESULTS

3.1 | Performance on classification task

The behavioural performance of the classification
task was assessed in terms of response time and accuracy.
Here we hypothesised that participants would respond
and classify images faster and more accurately when the
identity of the upcoming face was predictable. For
the response time, both one-way, repeated measures
ANOVAs yielded a main effect for image types (temporal

delay block: F[1.24, 40.97] = 304.67, p < .001, ηp
2 = .902

[Greenhouse–Geisser corrected]; visual interference
block: F[1.21, 39.87] = 165.14, p < .001, ηp

2 = .833
[Greenhouse–Geisser corrected]). In both cases, the par-
ticipants were able to classify expected images signifi-
cantly faster than predictive (temporal delay: t(66)
= "21.41, p < .0001, d = "2.56; visual interference: t
[99] = "18.87, p < .0001, d = "2.56), random (temporal
delay: t[66] = "21.34, p < .0001, d = "2.55; visual inter-
ference: t[99] = "18.60, p < .0001, d = "2.53), and
interference images (visual interference: t[99] = "16.76,
p < .0001, d = "2.28; Figure 2). The remaining contrasts
yielded no significant differences in response time
(p > .05). Similarly, the accuracy of the behavioural per-
formances significantly differed between the image types
regardless of the block type (temporal delay: χ 2 (2)
= 19.98, p < .0001; visual interference: χ 2 (3) = 37.92,
p < .0001). It appears that fewer erroneous responses
occurred during the classification of expected in compari-
son to predictive (temporal delay: p < .001, r = ".38;
visual interference: p < .0001, r = ".36), random (tempo-
ral delay: p < .0001, r = ".40; visual interference:
p = .002, r = ".27) and interference images (visual inter-
ference: p < .0001, r = ".38; Figure 2). The remaining
comparisons showed no substantial differences in accu-
racy between the image types (p > .05). A Bonferroni
correction was applied to all post hoc comparisons.

3.2 | N170 responses

The modulation of the N170 component was analysed to
investigate whether, in both block types, perceptual pro-
cessing of predictable images was aided by top-down
activity. It was hypothesised that in comparison to unpre-
dictable images, fewer resources would be required to
process cued images. The expected images were, thus,
predicted to evoke a reduced N170 response compared to
images where the identity of an upcoming face was not
foretold by a certain cue. For the temporal delay block,
the 2 # 2 repeated measures ANOVA yielded a signifi-
cant main effect for image type (F[1, 33] = 5.95, p = .020,
ηp

2 = .153) and no interaction between hemisphere and
image type (F[1, 33] = 1.68, p = .204, ηp

2 = .049). More
precisely, expected images reflected a significantly dimin-
ished response in contrast to random images (one-sided: t
[33] = 2.44, p = .010, d = .42; Figure 3a; Table 1). Inter-
estingly, for the visual interference block, the 2 # 3
repeated measures ANOVA yielded no significant main
effect for hemisphere (F[1,33] = .20, p = .657, ηp

2 = .006)
and image type (F[1.71, 56.42] = .20, p = .785, ηp

2 = .006
[Greenhouse–Geisser corrected]; Figure 3b), nor a signifi-
cant interaction between the two (F[2.00, 65.87] = .15,
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p = .864, ηp
2 = .004 [Greenhouse–Geisser corrected]).

Hence, a significant reduction in the N170 was only
observed when a predictable image immediately ensued
its corresponding cue.

3.3 | Ongoing modulations of pre- and
post-stimulus alpha/beta power

In a previously carried out study, we observed that alpha/
beta power enhancements, extending from the onset of
the predictive until the onset of the expected image,
revealed an optimal state that prioritised top-down pro-
cesses (Roehe et al., 2021). Based on these findings, we
now hypothesised that a similar alpha/beta enhancement
should be evident within the pre-stimulus timeframe
prior to an expected image, regardless of the block type.
However, both temporal delays and visual interferences
may impede an elongated enhancement in alpha/beta

power that extends throughout the entire period, stretch-
ing from the onset of the cue until the presentation of the
expected image.

For the temporal delay block, the entire 6-s timeframe
was analysed as two succeeding 3-s timeframes and con-
trasted with the 6-s timeframe between two random
images. In the first 3-s timeframe, a distinctive negative
cluster, encompassing both alpha and beta frequencies,
marked the approximate timeframe of the behavioural
responses classifying predictive images (p < .001;
Figure 4a). Considering the substantial differences in
power marked by the first cluster and its subsequent
impact on rendering smaller differences insignificant
(p = .072), we readjusted the analysed time window so
that neural activity occurring during the period at which
most behavioural responses occurred was disregarded (0–
1000 ms, locked to stimulus onset). This decision was
driven by the primary interest to examine neural corre-
lates of face-related expectations rather than those

F I GURE 2 Behavioural performance for each type of image present in the two blocks. Significant differences (α ≤ .05) in response time
(ms) and accuracy (%) are marked accordingly (*).

ROEHE ET AL. 7
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underlying behavioural responses. Analysing the time-
frame from 1000 to 3000 ms post-stimulus onset (predicti-
ve > random) consequently yielded a significant

enhancement in alpha/low beta power for predictive
images (relative to random images; p = .046; Figure 4d).
The second timeframe showed a late negative cluster just

F I GURE 3 N170 amplitudes and topographies for each image type of the two experimental conditions. (a) Grand average waveforms
for expected and random images of the temporal delay condition pooled across hemispheres (P5/6 and P7/8). The red line indicates the
significant difference in mean amplitude observed in the temporal delay condition. The scalp topographies extend from 140 to 180 ms in
10 ms increments which depicts the period analysed for the N170 component. (b) Grand average waveforms for expected, interference, and
random images of the visual interference condition pooled across hemispheres. Again, the scalp topographies extend from 140 to 180 ms,
depicting the period analysed for the N170 component.

TAB L E 1 N170 amplitude (mean ± SD; μV).

Temporal delay Visual interference

Channel Expected Random Expected Random Interference

P7 "2.16 ± 4.75 "2.26 ± 4.44 "1.65 ± 4.30 "1.52 ± 4.34 "1.61 ± 4.09

P8 "2.03 ± 5.30 "2.30 ± 5.34 "1.46 ± 4.94 "1.40 ± 4.94 "1.43 ± 4.97

P5 "0.10 ± 4.70 "0.36 ± 4.48 0.43 ± 4.29 0.22 ± 4.38 0.26 ± 4.39

P6 0.29 ± 4.84 "0.37 ± 5.05 0.84 ± 4.75 0.51 ± 4.91 0.56 ± 4.74

8 ROEHE ET AL.
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prior to the onset of the expected/random image
(p < .001; Figure 4b).

A very similar pattern in spectral power was observed
for the visual interference block. Here, the onset of the

predictive and interference images also evoked an alpha/
beta suppression, relative to random images, at the time
corresponding to the behavioural responses (predictive:
p = .002; interference: p = .002; Figure 4e, f). Once

F I GURE 4 Time-frequency representations (TFRs) of dissimilarities in spectral power amongst the different image conditions of each
block type. (a–d) For the temporal delay block, the timeframe depicted stretches from the onset of the predictive image to the onset of the
expected image. The elongated interstimulus interval, which is unique to the temporal delay condition, is illustrated in subplot b. (e–i) For
the visual interference block, the timeframe extends from the onset of the predictive image to the onset of the expected image with the
interference image occurring amid the two. In addition, the scalp map illustrated in the corners represents the predefined parieto-occipital
region of interest used to create all TFRs. For all TFRs, the timeframe between the onsets of two random images was used as a comparison.
Subplots, representing a smaller timeframe (1000–3000 ms), are depicted below their original 3000 ms counterparts (d, h, i). Clusters of
interest, marking considerable differences in power between the chosen contrasts, are outlined in grey. The relationship between the beta
suppression and alpha enhancement, reflected in the timeframe extending from 1000 ms after onset of the interference/random images (i), is
illustrated in the scatter plot (j).

ROEHE ET AL. 9
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resizing the time window to extend from 1000 to 3000 ms
post-stimulus onset, significant enhancements in alpha/
beta power succeeded the negative clusters (predicti-
ve > random: p = .047; interference > random: p = .046;
Figure 4h, i). Intriguingly, whilst the alpha/beta enhance-
ment after the onset of the predictive image stopped near
to 500 ms before the onset of the interference image, the
enhancement after the onset of the interference image
remained until the presentation of the expected image.
Similar to the temporal delay block, the onset of the
expected images was met by a suppression of largely beta
power that commenced more than 1000 ms prior to stim-
ulus onset (Figure 4i). Ultimately, we analysed the rela-
tionship of the two concurring clusters leading up to the
onset of the expected images (Figure 4i). Interestingly, we
observed a correlation between the suppression of high
beta and the coinciding augmentation of alpha/low beta
activity (Spearman’s rho = .36, p = .035, 95% CI [.03 .63];
Figure 4j).

Collectively, to ensure that these substantial enhance-
ments in alpha/beta power (1000–3000 ms post-stimulus
onset) can indeed be linked to top-down processes reflect-
ing expectations regarding the identity of the expected
images, we analysed the timeframe covering the interval
between the onset of the expected and the ensuing ran-
dom image (Figure 4c/g). Like the previously stated
results, the onset of the expected images also reflected a
substantial suppression of alpha/beta power around the
time of the behavioural response, irrespective of
the block type (temporal delay: p < .001; visual interfer-
ence: p < .001). However, diverging from the earlier find-
ings, no significant enhancements in alpha/beta power
followed these suppressions. Instead, these suppressions
seemed to persist for almost half the ISI (Figure 4c/g). In
addition, data-driven scalp maps were created to further
examine the topographical distribution of the alpha/beta
activity within the timeframes of the observed clusters.
These conveyed that enhancements in alpha beta power
were primarily located across posterior regions, whereas
the alpha/beta suppressions tended to be strongest across
central regions (Figure S2).

Finally, a data-driven correlation (within-participants)
was implemented to analyse the relationship between the
observed positive cluster (Figure 4d) and the significant
N170 attenuation evident in the temporal delay block. For
each participant, the magnitude of the N170 reduction was
correlated with the power of the positive alpha/beta clus-
ter. Normalised power was averaged across the parieto–
occipital region of interest and the significant time and fre-
quency points. Results revealed an insignificant relation-
ship between the enhancement in alpha/beta power and
the reduction in the N170 response (Spearman’s
rho = ".21, p = .229, 95% CI: [".51 .14]; see Figure S1).

4 | DISCUSSION

Ideally, an expected event would shortly ensue after
being foretold by a cue. However, every now and then,
we are left waiting for an anticipated stimulus to occur
and are sometimes even faced with processing other per-
cepts in the meanwhile. In the current study, we looked
at the N170 component in combination with spectral
changes in alpha and beta frequencies to investigate how
such temporal delays and visual interferences impact
face-related expectations.

In the timeframe leading up to the depiction of
expected images (relative to random images), we
observed enhancements in both alpha and low beta oscil-
lations, suggesting increased inhibition of incoming
information, followed by alpha and beta suppressions,
suggesting a release from this inhibition. These fluctua-
tions in alpha/beta power conveyed different spectral pat-
terns depending on whether a temporal delay in stimulus
onset occurred or an interfering face image was presented
in between the predictive and expected images. Note,
however, that the way the data were examined and ana-
lysed in the present study does not permit us to suggest
that these observed fluctuations in alpha/beta power
reflect a neural mechanism that gates bottom-up infor-
mation per se. Instead, our results conveyed that the
brain fluctuates between neural states of either alpha/
beta enhancements or suppressions to facilitate either
anticipatory or feedforward processes, respectively.

Moreover, we observed that time-resolved neural
responses for expected images also showed dissimilar
expressions depending on the block type. As such, a
reduction in the N170 component was observed if the
expected images followed the predictive faces, despite a
relatively long temporal delay of 6 s, but vanished when
preceded by a contextually relevant face image in the
visual interference condition. Irrespective of the block
type, behavioural measures confirmed that the identity of
the cued face images was learned and could be predicted.
As hypothesised, this led to a decrease in response time
and an increase in overall accuracy.

4.1 | Suppressions in alpha/beta power
reflect a neural state optimal for bottom-up
processes

Firstly, we observed suppressions encompassing alpha
and beta frequencies during the first 1000 ms after image
onset for all image categories in contrast to random faces
(Figure 4). Given that both the predictive and expected
images share an informative nature, although of different
means, the observed decline in alpha/beta power seems
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to be in line with the previously establish premise that
tasks which require greater engagement also seem to
evoke a greater alpha/beta power decrease (Griffiths
et al., 2019; Lebar et al., 2017). Broadly, these studies
build upon the notion that low-frequency oscillations,
predominantly alpha, are a marker for sensory inhibition
and that decreases in alpha power reflect a release from
this inhibition (Klimesch, 2011). Increases in alpha
power across the hemisphere contralateral to the spatial
location of unattended input has, for instance, been
linked to the active inhibition or gating of visual–spatial
attention (Kelly et al., 2006; Rihs et al., 2007; Worden
et al., 2000). In turn, posterior alpha suppressions corre-
sponded to selective attentional deployment towards a
cued hemifield (Thut et al., 2006). Under this framework,
enhancements in alpha/beta power would be linked to
prioritising top-down processes, whilst a decline in these
frequency ranges would shift priority to bottom-up pro-
cesses. Notably, these task-related decreases in alpha/
beta power extend across various tasks (Lebar
et al., 2017; Pfurtscheller et al., 1994), sensory modalities,
such as visual and auditory (Griffiths et al., 2019; Thut
et al., 2006), and somatosensory (Lebar et al., 2017), as
well as various species, including humans (Griffiths
et al., 2019; Pfurtscheller et al., 1994), macaques
(Haegens et al., 2011), and rodents (Wiest &
Nicolelis, 2003). The omnipresence of this pattern in low-
frequency power, therefore, seems to hint towards a more
general process beneficial for processing incoming infor-
mation, rather than reflecting actual sensory information
itself (Griffiths et al., 2019). In their study, Griffith and
colleagues (2019) showed that target stimuli that were
contextually relevant to the task evoked an augmented
alpha/beta suppression. Given that the paired-up images
in the present study had to be learned and memorised
prior to the EEG recording, they would have stood out
from the rest of the randomly occurring images. We thus
propose that the alpha and beta suppressions, associated
with the predictive and expected images (relative to ran-
dom images), may signal augmented contextual
relevance.

Strikingly, we observed an identical alpha/beta
response within a similar timeframe ($0–1000 ms) for
interfering images (Figure 4f). One may question the siz-
able difference in alpha/beta power between interference
and random images considering that the
interference images are effectively just arbitrarily selected
random images. Here we propose that the interfering
images become an unintentional temporal cue for the
onset of the expected images (Xu et al., 2021). Having
learned the sequential structure of the visual interference
block will have provided participants with the opportu-
nity to anticipate that the onset of the expected image

will ensue 3 s after the onset of the interference image.
Thus, although the interference images convey little to
no differences in behavioural and time-resolved neural
responses when compared to random images (Figures 2
and 3b), their temporal station seems to be contextually
relevant for predicting the imminent onset of anticipated
faces. Given the distinctive attributes of predictive,
expected and interference images, the mutual decline in
alpha/beta power, within the first second after stimulus
onset, seems to coincide with the suggestion that this
spectral modulation reflects a more generic neural state
which boosts the ability to process contextually relevant
information (Griffiths et al., 2019).

4.2 | Enhancements in alpha/beta power
reflect a neural state optimal for top-down
processes

Extending the proposition raised above, an enhancement
in alpha/beta power may reflect a contrasting neural
state which is optimal for top-down processes, such as
reflecting the activation of prior knowledge (Brodski-
Guerniero et al., 2017; Mayer et al., 2016) and gating the
gain and precision of neural communication (Lebar
et al., 2017; Limanowski et al., 2020). Our findings
revealed momentary enhancements in alpha/beta power
within the timeframe ranging from the onset of the pre-
dictive to the onset of the expected image (in contrast to
random images; Figure 4d/h–i). Here we put forth the
notion that like the alpha/beta suppressions, these
enhancements do not, in fact, carry specific information
regarding the anticipated face but, instead, create an opti-
mal neural condition that is favourable for top-down pro-
cesses. With this interpretation, we intend to unify some
of the widely held theories regarding the role of alpha/
beta frequencies. Brodski-Guerniero et al. (2017), for
instance, conveyed that alpha and beta frequencies index
the activation of prior face-related knowledge. More spe-
cifically, they observed that alpha/beta frequencies corre-
lated with the amount of activated prior knowledge in
face-specific brain regions, such as the fusiform face area
(FFA). Likewise, Mayer et al. (2016) showed that an
increase in pre-stimulus alpha power was associated with
the activation of former knowledge about previously
observed letters. These observations fit well with the
notion that a neural state ideal for top-down processes
could promote access to activated neural representations
whilst suppressing other less relevant external input. As
such, fluctuations of alpha and beta power appear to
reflect continuous shifts in gating inhibition of bottom-
up processes whilst systematically giving rise to top-down
processes. This suggestion provides a seamless transition
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to the proposal that alpha/beta power have been associ-
ated with gating neural communication (Lebar
et al., 2017; Limanowski et al., 2020). Findings of these
two studies revealed that beta power in occipital regions
decreased when vision was task relevant and increased
when visual input was ignored. Therefore, these studies
suggest that modulations of beta power gate to what
extent a particular visual stimulus is processed at a given
moment. This foregoing argument assumes that there is a
systematic relationship between beta and alpha power. In
other words, one would expect an increase in beta power
to be accompanied by an increase in alpha power. In
turn, the established neural state would be favourable for
the facilitation of top-down processes, that is, the
activation of prior knowledge. Our results support such a
relationship by revealing a correlation between the co-
occurring beta suppression and alpha enhancement just
prior to the presentation of expected (relative to random)
images in the visual interference block (Figure 4j). These
findings would suggest that the beta suppression restricts
top-down processes, yielding confined anticipatory pro-
cesses. Arguably, this could indicate that in the visual
interference blocks the pre-activated neural representa-
tion of the upcoming expected image is suppressed or dis-
missed in order to unbiasedly process the contextually
relevant interfering face (Blom et al., 2020). Hence, it
appears that the underlying predictive hierarchical model
is modified accordingly to account for the contextually
relevant visual interferences.

On a related note, this spectral pattern of a coexisting
beta suppression and alpha power enhancement was not
observed in the temporal delay block. Instead, the onset
of the expected (relative to random) image was met by a
drawn-out suppression in both alpha and beta power
(Figure 4b). Here we propose that the delayed onset of
the anticipated image provided an elongated timeframe
in which the brain is left ‘waiting’ for this upcoming
event. Notably, to minimise confounds of surprise, the
duration of the delay in stimulus onset was kept consis-
tent throughout the temporal delay blocks. That is, the
participants could predict, as a result of statistical learn-
ing, that an upcoming image is depicted six seconds after
the onset of its precursor. Thus, rather than keeping the
representation for the predicted image active throughout
the 6-s interval, which could be relatively taxing, the
brain efficiently shifts between neural states optimal for
the current contextual setting. Namely, our results sug-
gest that a temporary facilitation of relevant top-down
processes shortly after the offset of the predictive images
would suffice for the present context (Figure 4d), before
shifting to a neural state optional for visual bottom-up
and action-related processes in preparation for the
upcoming sensory input (Figure 4b). For visual

representation of the topographical distribution of the
alpha/beta enhancements and attenuations, please refer
to the scalp maps in Figure S2.

4.3 | Neural and behavioural signatures
of anticipatory processes

Foremost, we observed that behavioural responses were
significantly faster for anticipated faces compared to faces
which were not foretold by a corresponding predictive
face (Figure 2). In addition, significantly fewer errors
were made when classifying a predicted in comparison to
an unpredicted face. These anticipation-facilitated beha-
vioural responses were evident for both the temporal
delay and visual interference conditions. In both cases,
prior knowledge could be relied upon to guide precise
top-down predictions regarding the expected stimulus.
Having explicitly learned the identity of the expected
faces, the participants were less likely to accidentally mis-
classify the sex of these face images. In terms of speed,
behavioural responses could be prepared ahead of the
depiction of the anticipated stimulus, resulting in an
accelerated behavioural response. In line with previous
studies, these behavioural effects confirm that top-down
activity, such as explicit or implicit expectations, boosts
behavioural responses (Ran et al., 2014; Turk-Browne
et al., 2010).

Likewise, cued expectations have also been shown to
influence time-resolved neural responses (Johnston
et al., 2016; Ran et al., 2014). As hypothesised, we
observed that the face-sensitive N170 was significantly
diminished (reduced in negativity) for the four predict-
able face images of the temporal delay block (Table 1 and
Figure 3a). Notably, this neural activity in response to
these predictable images did not reach significance in the
visual interference block (Figure 3b). Previous studies
have conveyed that the N170 diminishes for contiguous
depictions of the same face (Caharel et al., 2009;
Campanella et al., 2000; Ran et al., 2014). In these cases,
the neural correlate of the identity of a particular face
was available to be drawn upon to aid visual processing
of the succeeding image. As such, fewer cognitive
resources were required to process and respond to these
predictable faces. In turn, this would be reflected in a
diminished neural response, such as a reduction in the
N170. The design of our temporal delay block allowed
predictive images to pre-activate a representation of the
expected images which, in a top-down fashion, would be
available to facilitate early processing of the directly
ensuing expected image. On the contrary, given that in
the visual interference block the predictive and expected
images were segregated by an interfering image, the cue-
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triggered neural representation of the expected image
might be temporally overwritten when the new sensory
information of the interfering face becomes available.
Especially considering that unlike other visual ‘distrac-
tor’ paradigms, the interference images in the current
study were relevant to the task at hand and required
visual processing. This reasoning is supported by findings
showing that the brain regions involved in actively
upholding face-related neural templates are also the
regions processing this context-specific information
(Brodski-Guerniero et al., 2017). Contextual relevance,
thus, appears to play a fundamental role in selecting the
most efficient forthcoming neural state. This line of
thought is based on a related suggestion claiming that
when multiple target representations are active simulta-
neously, trial-by-trial changes in environmental context
play a considerable role in regulating the attentional
weight attributed to them individually (van Driel
et al., 2019). The previously observed fluctuations in
alpha and beta power provide confirmation that a goal-
directed shift in neural states takes place between top-
down and bottom-up processes throughout both block
types. In addition, the interplay between the coexisting
alpha enhancement and beta suppression in the visual
interference condition provides an explanation as to why
we observed significant expectation-facilitated beha-
vioural responses but no substantial differences in the
N170 component between expected and random images.
As mentioned previously, the beta suppression seems to
restrict anticipatory process (Figure 4i). Hence, it appears
that lower sensory levels within the predictive hierarchi-
cal model are fine-tuned to account for the contextually
relevant visual interferences whilst higher levels within
this hierarchical predictive model remain stable (Long &
Kuhl, 2018). Long and Kuhl (2018), for instance, con-
veyed that visual interruptions, in the form of scrambled
facial features, predominantly influenced representations
within the visual systems. Switches in goal or task rele-
vance, on the other hand, influenced representations
higher up in the cognitive hierarchy and involved fronto-
parietal networks. Similarly, the interfering faces in the
present study seem to impede a sustained maintenance of
the anticipated face’s sensory template. Thus, the predic-
tive model no longer provided a valuable source to draw
identity-related expectations from ahead of its subsequent
afferent sensory input, hence, resulting in an insignifi-
cant expectation-facilitated N170 response as observed in
the visual interference condition. Access to higher corti-
cal levels, representing for instance the learned associates
between expected images and their corresponding beha-
vioural responses, would, however, continue to enhance
the propagation of specific behavioural predictions albeit
the lack of an actively maintained face-related

representation. As such, lower levels representing face-
related templates could be overwritten by incoming
visual information without compromising expectation-
facilitated behavioural measures. This supports the
notion that once a visual input and its corresponding
behavioural response have been encoded into working
memory, the associated action response can be prepared
without waiting for the visual representation to be
retrieved first (van Ede et al., 2019). This opens an excit-
ing line of further investigations which could combine
M/EEG and multivariate pattern analysis (Barne
et al., 2020; Blom et al., 2020) to decode the amount of
face-specific information activated ahead of its afferent
sensory input after having attended to visual
interferences.

Lastly, we corroborated that the observed enhance-
ments in alpha/beta power are indeed neural signatures
of a generic neural state—allowing face-related neural
patterns to emerge—rather than representing face-
specific information per se. This interpretation was
drawn from the data-driven correlation which did not
provided evidence to suggest that the enhancement in
alpha/beta power for expected relative to random images
(cluster in timeframe predictive > random; Figure 4d)
correlated with the significant reduction of the N170
obtained in the temporal delay condition (Figure S1). A
question that remains, however, is that if these enhance-
ments in power signal a general neural state that is bene-
ficial as a means of boosting top-down processes, what
neural signatures do then carry actual stimulus specific
information? Griffiths et al. (2019) put forth the notion
that since the phase and power of a given oscillation are
mathematically distinct, they may also have independent
facilitatory purposes. This theoretical suggestion is sup-
portive of previous findings revealing that the phase of
low-frequency oscillations ($8 Hz) appears to carry infor-
mation about a given stimulus (Michelmann et al., 2016).
Note, however, that more evidence is required to conclu-
sively attribute distinctive, yet complimentary, neural
purposes to these two oscillation components.

5 | CONCLUSION

In summary, we obtained novel findings which demon-
strated that the brain shifts between neural states to opti-
mise hierarchical predictive models and subsequent
contextually relevant anticipatory processes. In both the
temporal delay and visual interference block, we found
indications of a neural state beneficial for top-down pro-
cesses, that is, granting early access to cued neural repre-
sentations. Nevertheless, if the onset of the anticipated
face was interrupted by the depiction of a distracting yet
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relevant image, priority shifted to processing the interfer-
ing visual input before giving restricted access to contex-
tually relevant properties of the formerly cued neural
representation (in the current study: the gender/sex of
the expected face). In line with a growing body of litera-
ture, these fluctuating shifts boosting access to either
internal representations or external stimulus specific
information were mediated by modulations of alpha and
beta power (Benwell et al., 2021; Brodski-Guerniero
et al., 2017; Griffiths et al., 2019; Lebar et al., 2017;
Limanowski et al., 2020; van Moorselaar et al., 2020).
Our observations suggest that lower sensory levels within
these predictive models are continuously revised, grant-
ing us to constantly adapt to the fluidity of our surround-
ings. Notably, neither a temporal delay in stimulus onset
nor visual interferences negatively impacted expectation-
facilitated behavioural responses. The brain, thus,
appears to fine-tune different levels within the hierarchi-
cal predictive model to different degrees. Whilst lower
levels are revised and overwritten to allow us to have the
most contextually adequate representation of our exter-
nal environment at a given moment, higher levels appear
to remain intact to aid higher cognitive functions. Ulti-
mately, our findings fit neatly within the predictive pro-
cessing framework by corroborating that the brain
continuously adapts internal predictive architectures, and
subsequent predictions, to optimise contextually relevant
behaviours.
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