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Action observation is known to trigger predictions of the ongoing course of action and thus considered a
hallmark example for predictive perception. A related task, which explicitly taps into the ability to
predict actions based on their internal representations, is action segmentation; the task requires parti-
cipants to demarcate where one action step is completed and another one begins. It thus benefits from a
temporally precise prediction of the current action. Formation and exploitation of these temporal pre-
dictions of external events is now closely associated with a network including the basal ganglia and
prefrontal cortex.

Because decline of dopaminergic innervation leads to impaired function of the basal ganglia and
prefrontal cortex in Parkinson's disease (PD), we hypothesised that PD patients would show increased
temporal variability in the action segmentation task, especially under medication withdrawal (hypoth-
esis 1).

Another crucial aspect of action segmentation is its reliance on a semantic representation of actions.
There is no evidence to suggest that action representations are substantially altered, or cannot be ac-
cessed, in non-demented PD patients. We therefore expected action segmentation judgments to follow
the same overall patterns in PD patients and healthy controls (hypothesis 2), resulting in comparable
segmentation profiles. Both hypotheses were tested with a novel classification approach.

We present evidence for both hypotheses in the present study: classifier performance was slightly
decreased when it was tested for its ability to predict the identity of movies segmented by PD patients,
and a measure of normativity of response behaviour was decreased when patients segmented movies
under medication-withdrawal without access to an episodic memory of the sequence. This pattern of
results is consistent with hypothesis 1. However, the classifier analysis also revealed that responses given
by patients and controls create very similar action-specific patterns, thus delivering evidence in favour
hypothesis 2.

In terms of methodology, the use of classifiers in the present study allowed us to establish similarity
of behaviour across groups (hypothesis 2). The approach opens up a new avenue that standard statistical
methods often fail to provide and is discussed in terms of its merits to measure hypothesised similarities
across study populations.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

substantia nigra (Bernheimer et al., 1973; Birkmayer and Wuke-
tich, 1976), which leads to decreased levels of this neuro-

Parkinson's disease (PD) is a condition with well-defined neu- transmitter in the basal ganglia and the prefrontal cortex (PFC). PD
rological changes. It results from a loss of dopaminergic cells in the is signified by prominent motor impairments such as tremor,
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bradykinesia, and rigor. These motor symptoms are often accom-
panied by cognitive changes, including compromised ability to
learn from feedback and limited use of the predictability of ex-
ternal events (Flowers, 1978; Cameron et al., 2010; Cools et al.,
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2003, 2001, 2006; Crawford et al., 1989; Frank, 2006; Zalla et al.,
1998; Shohamy et al., 2008). A related impairment in PD which has
recently been linked to the basal ganglia and the prefrontal cortex
is the internally driven prediction of external events (Schonberger,
et al,, 2013).

1.1. (Temporal) prediction in a basal ganglia network

The proposal that the basal ganglia are involved in prediction of
the content and temporal onset of external events (referred to as
sensory states in the original literature Bischoff-Grethe et al,
2003) is grounded in a combination of findings from patient data
with data from animal, imaging, and modelling research (Alm,
2004; Balleine et al., 2009; Berns and Sejnowski, 1998; Bischoff-
Grethe et al., 2003; Schonberger, et al., 2013). The research sug-
gests that the basal ganglia and prefrontal cortex, and particularly
the supplementary motor area (SMA), work in concert in learning,
selecting, and timing predictions of external events (Lewis et al.,
2003; Stocco et al., 2010; Schiffer et al., 2015; Schonberger, et al.,
2013; see Coull and Nobre, 2008 for a dissenting view). Because
decline of dopaminergic innervation of the basal ganglia and
prefrontal cortex is a hallmark feature of PD, this research suggests
that PD patients should be compromised in the fast prediction of
event sequences, particularly under medication withdrawal. The
present study tested this hypothesis explicitly, implementing an
action segmentation task.

1.2. Action segmentation requires exploitation of semantic knowl-
edge and benefits from prediction of forthcoming events

In the segmentation task participants observe an actor per-
forming familiar activities and are required to indicate their sub-
jective judgment whether an action boundary has occurred, i.e.,
whether an action step has been completed and a new action step
has been initiated. These segmentation judgments, also referred to
as boundary detection reports, are usually given in the form of a
button press (Zacks et al., 2001; Schubotz et al., 2012; Baldwin
et al,, 2008; Newtson and Engquist, 1976). Because actions are
highly structured and action observation is known to trigger on-
line predictions of forthcoming action steps (Csibra, 2007; Colder,
2011; Botvinick and Plaut, 2004; Kilner et al., 2007, 2004; Schiffer
et al., 2013; Stadler et al., 2011), reliable and fast performance in
action-segmentation tasks requires two core abilities:

First, action segmentation benefits from the ability to generate
a temporally precise prediction of the course of the current action,
including the end of one action step and the beginning of the next
action step thereafter. Detection of stimuli is not only aided by
predictability of occurrence, but also additionally facilitated by
predictability of stimulus onset (Rohenkohl et al., 2012). Thus,
predicting which action step is to follow, and at what time this
action step would naturally commence, aids boundary detection in
the action segmentation task.

Importantly, if the basal ganglia are involved in real-time pre-
diction of sequential events (Schiffer and Schubotz, 2011), we
would expect increased variability in the timing of the response
around action boundaries (Baldwin et al., 2008; Newtson and
Engquist, 1976) in PD patients. The action-segmentation paradigm
thus provides a sensitive test for the hypothesis that compromised
dopaminergic innervation of the basal ganglia and prefrontal
cortex leads to increased temporal variability in response beha-
viour, particularly under medication withdrawal (hypothesis 1),
indicating impaired (temporal) prediction and delayed assessment
of forthcoming sensory states.

A second, profound aspect of action segmentation is that ob-
servers have to rely on an internal representation of the single
steps that together form specific actions (action semantics) to

detect the end of one action step and the beginning of another.
Some authors have argued that PD patients should be impaired in
action segmentation (Zacks and Sargent, 2010). However, while
learning and retrieval of action semantics has repeatedly been
shown to involve a fronto-parietal network extending to the
temporal lobes (Decety et al., 1997; Spunt et al., 2010; Watson and
Chatterjee, 2011; Hoffman et al., 2012; Schubotz et al., 2012;
Schiffer et al.,, 2013), evidence for an involvement of the basal
ganglia is missing. We therefore propose that the ability to seg-
ment actions should be largely intact in non-demented PD (hy-
pothesis 2), resulting in comparable segmentation profiles.

1.3. Assessing action segmentation components in a patient study

We tested these hypotheses in a cohort of patients with idio-
pathic Parkinson's disease and a group of age-matched controls. To
assess whether changes in dopamine availability exert an effect on
the ability to segment actions per se and increase the temporal
variability of segmentation behaviour, PD patients underwent two
experimental sessions, one with their usual dopamine replace-
ment therapy unchanged (ON) and one under withdrawal of their
dopamine replacement therapy (OFF). Healthy controls took part
in two separate sessions without medication. Their virtual medi-
cation status (pseudo ON and OFF status) was yoked to the random
order of ON and OFF tests in the matched PD patients. During each
session, participants segmented a different set of 6 multi-step
action movies twice, allowing comparison of segmentation relia-
bility under different medication status.

14. Classification approach to assess similarity

Predictions of similarity, central to our second hypothesis, are
statistically challenging, because inference statistic measures aim
at establishing differences between groups. Even if these measures
fail to establish a difference between groups or conditions, such
null effects cannot be taken as a proof of similarity (Cohen, 1994).
Moreover, our hypotheses demand an estimate of the exact degree
of similarity between response patterns. We resolved this paradox
by developing a novel methodology, which implements a com-
putational classifier. To show that PD patients and healthy controls
can rely on the same action models, we transformed their re-
sponse behaviour in the action-segmentation task into a temporal
profile of response probability, expressed as the function that re-
presents the probability to make a response for each moment in
time. Bringing the data into this format allowed us to use these
temporal response profiles in a computational classifier (Fig. 1;
please refer to Methods Section 2.2 and 2.4.1 for further
explanation).

We trained a classifier to predict movie identity using the data
from a subset of participants as a training set and another subset
of participants as a test set. The hypothesised above-chance clas-
sification of movie-specific response profiles when testing data
and training data are taken from different groups strongly in-
dicates behavioural similarity. This behavioural similarity is evi-
dence in favour of intact semantic representation of action struc-
ture in PD. At the same time, the predicted differences in classi-
fication performance between different (above-chance) cross-
group classifications would show the predicted differences in the
temporal precision of segmentation behaviour in PD.

2. Materials and methods
2.1. Participants

A total of 32 male participants took part in the experiments: 16
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Fig. 1. Probability of segmentation judgments.Top row: Frames from an example movie showing an actor clearing out the dishwasher; 2nd and 3rd upper rows: each
participant segmented each movie twice (eSM,1 and eSM,2). The red bars correspond to individual segmentation judgments expressed as delta functions, taken from one
participant. Each bar represents one segmentation judgment. These delta functions were combined and transformed into temporal patterns representing the probability of a
segmentation judgment at each moment in time (probability-density functions), displayed in blue. The classifier analysis used these probability-density functions to predict
movie identity. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

patients with idiopathic Parkinson's Disease (PD) and 16 healthy
controls, individually matched for age, handedness, and education
(please refer to Table 1 for a summary of the information on the
patient and control population). Every invited PD patient was

Table 1
Descriptive data of patients and healthy controls.

PD: mean-min-max Controls: mean-min-max

tested and no dataset was discarded. For patients to be invited and
included in the study they had to fulfil the following list of in-
clusion criteria. Patients had to be diagnosed with idiopathic
Parkinson's disease. They had to be aged between 18 and 80, have
given written informed consent, and weren't allowed to take part
in any other study on the same day. Lastly, testing in their medi-
cation OFF state was conducted within their regular, scheduled
assessment, during which they withdraw from their individual

(STD)

(STD)

Age (yrs)

Edinburgh score
UPDRS-ON
UPDRS-OFF

BDI

PANDA

Disease duration (yrs)
Hoehn & Yahr-ON
Hoehn & Yahr-OFF

61-45-73 (7.4)
70.3-33-100 (17.3)
20.9-9-31 (6.6)
27.12-13-37 (6.9)
9.7-0-19 (6.1)
25.4-16-30 (2.8)
7-2-12 (3.1)
2.4-2-3 (0.10)
2.6-2-3 (0.09)

61.4-51-74 (5.1)
73.8-50-100 (2.8)
1.25-0-4 (1.3)
11-0-4 (1.1)
5.8-0-17 (4.1)
26.1-21-30 (2.4)

medication to test for symptom severity and dopa-responsiveness.
Thus, the patients were not in their medication OFF as part of a
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Fig. 2. Schematic representation of segmentation agreement analysis. Segmentation agreement scores were calculated for each participant (e.g., P1), under each medication
status (here referred to as"d’, or"drug status’, to avoid confusion), for each segmentation instance (e.g., first segmentation, s1) for each movie (e.g., m1). For each seg-
mentation judgment in the respective segmentation instance (left panel, P1: d1 s1 m1), we counted how many other segmentation judgments across the entire group (all
participants except the current one and his matched control, in each medication condition, in each segmentation instance, for the same movie) would fall into the same time
window (e.g., 6 for the first judgments, marked in pink, 3 for the second judgment, marked in purple). For explanation-purposes only, this example assumes a group of
4 participants, instead of the actual 32. This number is then normalised by the overall number of segmentations in the group. This process delivers a histogram of
segmentation agreements for each participant in each medication condition, in each segmentation instance, for each movie (displayed on the right). The histogram shows
that in this example, one of the segmentation judgments was agreed on in 6 instances (pink) and 3 different segmentation judgments were agreed on 3 times, respectively
(purple, magenta, yellow). The combination of these histograms is indicative of the segmentation agreement scores for a subpopulation (eg., PD patients, ON medication, in
their first segmentation instance) with the overall group. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this
article.)



32 A.-M. Schiffer et al. / Neuropsychologia 78 (2015) 29-40

Table 2
Overview of individual medication. Dopamine agonists were discontinued up to
36 h (Piribedil: 36 h, Ropinirole/Pramipexole 25 h) and replaced by L-Dopa until

Table 3
Description of the movies in the segmentation tasks.

complete cessation 14 h before testing. Movie content Length
Patient Medication Actor irons shirts, folds onto table. 110s
Actor finds sugar spilled on floor, takes broom, sweeps floor. 55s
P1 Pramipexole 2,1 mg, L-Dopa 850 mg, Selegiline 5 mg, Benserazide Actor takes clothes off the line, folds them away. 143 s
75 mg, Carbidopa 137,5 mg, Entacapone 1000 mg Actor clears out the dishwasher and sorts dishes into cupboards. 69s
P2 Amantadine 150 mg, L-Dopa 600 mg, Piribedil 50 mg, Entacapone Actor gets dressed (coat, boots and scarf), leaves room. 43s
1000 mg, Carbidopa 100 mg, Benserazide 25 mg Actor finds lamp not working, changes light bulb. 53s
P3 Piribedil 100 mg, L-Dopa 300 mg, Carbidopa 75 mg Actor pours milk into cup, spills coffee, gets cloth, wipes table. 44 s
P4 Rotigotine 4 mg, Rasagiline 1 mg Actor takes a photograph of flowers on a table. 62s
P5 Piribedil 400 mg, L-Dopa 400 mg, Carbidopa 100 mg Actor takes hand pump off bike, starts pumping air into tyre. 76s
P6 L-Dopa 300 mg, Carbidopa 75 mg, Pramipexole 3,15 mg Actor washes and cuts tomatoes, places both into bowl. 143 s
P7 Pramipexole 2,1 mg, Selegiline 5 mg Actor sticks poster to to wall using sellotape. 50s
P8 Pramipexole 2,1 mg, Rasagiline 1 mg Actor cleans dishes by hand. 119s
P9 Pramipexole 2,1 mg, Rasagiline 1 mg

P10 Pramipexole 2,36, Rasagiline 1 mg

P11 Ropinirole 12 mg, Rasagiline 1 mg

P12 Pramipexole 2,62, L-Dopa 700 mg, Benserazide 25 mg, Amantadine
300 mg, Tolcapone 300 mg, Carbidopa 150 mg

P13 Amantadine 200 mg, L-Dopa 200 mg, Benserazide 50 mg, Selegiline
10 mg

P14 Pramipexole 3,15, Rasagiline 1 mg, 225 L-Dopa, Carbidopa 56,25 mg,
Entacapone 600 mg

P15 Ropinirole 2 mg, Rasagiline 1 mg, Amantadine 200 mg

P16 Amantadin 200 mg, Rasagiline 1 mg, L-Dopa 218,75 mg, Benserazide
43,75 mg

clinical trial.

Exclusion criteria were: receiving deep-brain stimulation and
suffering from further neurological or life-expectancy limiting
diseases. Inclusion/exclusion criteria for matched controls were
comparable, except for the presence of idiopathic Parkinson's
disease, or any other neurological or psychiatric condition, which
were exclusion criteria for control participants. There was also no
relationship to a scheduled stay at the hospital for the control
group, as these participants did not receive or withdraw from any
medication.

All participants had an introductory session one day before the
first test session to practise a short version of the main task and
control tasks. This practice session did not contain any of the vi-
deos that were later used in the real test sessions (ON or OFF). The
purpose of this pilot session was to ensure that all participants
would understand the tasks, even if their first test session took
place under medication withdrawal. One matched control had to
be replaced by another equally well-matched control participant,
as the first person did not understand the instructions of various
subtasks.

Average Unified Parkinson's Disease Rating Scale (UPDRS)
scores for healthy controls was 1.15, compared to 23.8 for PD pa-
tients (mean ON medication: 20.9, mean OFF medication: 27.1).
The difference in UPDRS scores between PD patients and controls
was highly significant in a one-sided t-tests (T=17.8, p <1018
df=31), and so was the difference between ON and OFF session for
PD patients (T=6.1, p<10~%, df=15). The average Parkinson
Neuropsychometric Dementia Assessment (PANDA) scores were
25.4 and 26 for PD patients and healthy controls, respectively.
Beck's Depression Inventory (BDI) scores were 9.7 vs. 5.75 for PD
patients and healthy controls, respectively. The differences in
PANDA and BDI scores were not statistically significant in one-
tailed t-tests (PANDA: T= 0.5, p=0.31; BDI: T=0.8, p=0.21). No
healthy control participant and no PD patient scored lower than 14
points, indicating that that no participant fulfilled the cut-off for
dementia. All but one participant scored higher than 18 points,
indicating age-appropriate function (Kalbe et al., 2008). One PD
patient scored 16 points, thus being in the range of subtle cogni-
tive impairment. The proceedings were approved by the local
ethics committee of the Medical Faculty of the University of

Cologne and the work described was carried out in accordance
with The Code of Ethics of the World Medical Association (De-
claration of Helsinki) for experiments involving human subjects.

2.2. Task

2.2.1. Action segmentation task

All participants took part in two experimental sessions. For the
PD patients, one session took place when they were on their in-
dividual, regular dopamine-replacement medication (ON session),
and another session after over-nightly medication withdrawal
(OFF session). The order of ON/OFF sessions was randomised
across patients. An overview of medication specifics is included in
Table 2. For the healthy controls, whether a session was assigned
ON or OFF status was yoked to their matched patient's order of
sessions. Note that healthy controls did not receive any dopami-
nergic medication in any session. Therefore, these sessions will
henceforth be described as pseudo ON/pseudo OFF, to emphasise
that no medication was involved at any stage for the healthy
volunteers.

Within each test session, the participant segmented 6 different
short movies of naturalistic action sequences 2 times each (please
refer to Table 3 for a description of the movies). The first and
second segmentation instance within sessions included the same
movies, but no movie was repeated in the next session. The se-
lection of the 6 movies for each of the first session was pseudo-
randomised and the second session contained the other 6 movies
of the set of 12. Pseudo-randomisation ensured that each of the 12
movies appeared in all possible conditions across participants:

Table 4
Condition specific t-values in the comparison of classification performance against
chance level (50%). CON: control group, PD: patients.

Training-testing Training-testing p-value  T-value, all
group medication df=15
PD-PD ON-ON 6*10-16 36
PD-PD ON-OFF 1*10-17 46
PD-PD OFF-ON 1*10-16 40.3
PD-PD OFF-OFF 3*10-16 37.8
CON-PD ON-ON 8*10—-14 25.7
CON-PD ON-OFF 1*10-16 39.6
CON-PD OFF-ON 3*10-17 444
CON-PD OFF-OFF 5*10-19 57.7
PD-CON ON-ON 1*10-15 33.7
PD-CON ON-OFF 3*10-18 509
PD-CON OFF-ON 4*10-15 313
PD-CON OFF-OFF 4*10-19 58.8
CON-CON ON-ON 6*10—-16 36
CON-CON ON-OFF 6*10-19 57.1
CON-CON OFF-ON 4*10-17 433
CON-CON OFF-OFF 2*10-18 524
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first sessions ON medication, first sessions OFF medication, second
sessions ON medication and second sessions OFF medication. This
setup allowed us to measure reliability scores and movie specific
segmentation independent of order and medication effects (please
refer to Schubotz et al., 2012 for a comparable design in a study
with young healthy volunteers).

Within the segmentation task, participants were instructed to
indicate with a button press whenever a new action step began. In
more detail, participants were told to press a button when they
felt (emphasis on the subjectivity of the judgement) that one ac-
tion step had finished and a new action step was to begin (ex-
ample judgments for the two segmentations performed on the
same movie., i.e., within one session, are depicted by the blue lines
and bars in Fig. 1). They were told that an action step might relate
to what they would say if we asked them to give an online record
of the actions they saw to a bystander. Responses were made with
a standard QWERTZ keyboard, by pressing the space bar.

2.2.2. Motor control task

Participants' motor behaviour was assessed in a separate task.
In this part of the experiment, subjects were presented with a
stream of white and red squares on a grey-background monitor at
1/5 Hz. Their task was to respond as quickly as possible to the red
crosses, while ignoring the white ones. Each colour appeared
equally often in a randomised order. The task was run for 60 trials,
i.e.,, 30 target trials (red crosses). Crosses were presented in font
size 30. Responses were made with a standard QWERTZ keyboard,
by pressing the space bar.

2.2.3. Cognitive control tasks

To increase the interpretability of the classifier results we
conducted a number of control tasks which tested for differences
between patients and healthy controls in: the ability to retrieve
semantically associated items, the ability to recognise a familiar
action episode, and in the ability to predict the on-going course of
an action.

Semantic association control task: The ability to retrieve se-
mantically associated items was tested in a paradigm in which
participants were presented with a pair of nouns, e.g., “sugar”,“-
flour”, and had to name a related item, e.g., “salt”. Reaction times
were recorded over 10 trials per session, with a microphone that
was sensitive to speech onset. Participants had up to 6 s to initiate
their response. The inter-trial interval was 1 s. Correctness of the
10 responses (i.e., whether the participants response was se-
mantically related to the word pair) was later rated by two in-
dependent observers. These were blind to disease status and
medication.

Episodic recognition control task: The ability to recognise a fa-
miliar action was tested on another set of 10 everyday action
movies (not appearing in the segmentation tasks), which were
presented at the beginning and end of each experimental session.
These movies contained short everyday actions, all performed
while sitting at a table, such as preparing muesli, stapling a stack
of paper, wrapping up a parcel, etc. (please refer to Schiffer et al.,
2013 for pictures showing some of the actions). When participants
saw the movies again at the end of the test session, movies either
appeared in the same version as before or in a different version
(please refer to Schiffer et al., 2012, 2013 for more details). Parti-
cipants had to press one of two response buttons (left arrow key
and down arrow key on a standard QWERTZ keyboard) to indicate
whether the movie had been presented as before. Participants had
up to 6 s to initiate their response. The inter-trial interval was 1 s.

Action prediction/association control task: Lastly, to test for par-
ticipants' ability to predict a likely on-going course of action,
participants were presented with a third set of 10 movies, which
ended abruptly after the completion of an action step. These

movies were again taken from the sample implemented in Schiffer
et al. (2012, 2013), showing everyday actions taking place at a
table; there was no overlap between the movies used for any of
the control tasks within subjects. Participants were then in-
structed to name a probable next action step. Voice responses
were again recorded with a microphone that was sensitive to the
time point of speech onset. Participants had up to 6 s to initiate
their response. The inter-trial interval was 1s. Please note that
while prediction of likely next action steps would help to decrease
reaction times in this task, timing of these associated predictions is
not as crucial as in the action segmentation paradigm.

2.3. Descriptive statistics

In a first simple analysis, we used number of segmentations as
an approximate measure to estimate the reliability of segmenta-
tion responses. The number of segmentations for each movie was
correlated within each session for each participant to yield average
correlation scores across all six respective movies for each parti-
cipant in each session (cmp. Schubotz et al., 2012).

2.3.1. Segmentation agreement

In a next step, we assessed how normative segmentation
judgments were (i.e., how much a the segmentation profile of a
movie derived from one person was in agreement with how other
participants segment the same movie). This variable needs to be as
closely related to the timing of segmentation judgments as pos-
sible, as this approach complements the classifier analysis (Section
2.4). To obtain a normativity score, we first established a sym-
metric time window around each segmentation judgment ‘a’. We
then counted how many other times segmentation judgments
were placed within this window around ‘@’ by the other
participants.

To avoid any bias, we excluded the judgments by the partici-
pant in their second segmentation instance of the same movie and
the judgments by his matched control. We call this the number of
segmentation agreements for segmentation judgment ‘a’. This re-
presents a statistical random variable which measures how nor-
mative a given segmentation judgment ‘a’ is. Therefore, we can use
this random variable to estimate how much the segmentations
produced by a given group (e.g., PD patients OFF medication) agree
with the general population. A group including participants who
segment a movie in a manner different from the average popula-
tion will get lower agreement scores. Conversely, a group with
participants that segment more normatively will get higher
agreement scores (see Kurby et al, 2014 for a closely related
approach).

In addition to the inference-statistic measures and the nor-
mativity estimate, we also employed a classifier approach to test
whether PD patients rely on the same semantic structure (i.e., are
uncompromised in their ability) to segment actions. The classifier
approach extends the possibilities of classic inference statistics;
while classic approaches test for the difference between popula-
tions, classifiers can show that the data drawn from one sample
can predict the shape of the data of the corresponding sample-a
strong argument in favour of similarity.

2.4. Within-and between-groups classification

The power of a classifier analysis is its ability to predict the
category of an item based on information the classifier previously
gathered about other items from all existing categories. Harnes-
sing this characteristic, we devised a classifier analysis to show
that classification in PD patients and healthy controls is so con-
sistent that a classifier could predict which movie's data it was
currently being presented with.
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Fig. 3. Classification on temporal segmentation patterns. The classifier was trained on a representation of the temporal pattern of responses, i.e., the probability-density
functions, capturing the probability of a segmentation judgment over time (see Fig. 1), for each movie (SM1, SM2, etc., here limited to 4 movies for presentation purposes
only), taken from all participants (P2, P3, etc.) except the one that it was later tested on (P1) and his matched control. In the testing phase, the classifier was iteratively
presented with the data from the left-out participant and had to assign one of two possible labels (e.g., doing-the-dishes movie vs sweeping-the-floor movie, here re-
presented as purple and yellow). In the case of across-group classification, the classifier would be presented with the data from the matched control of the left-out
participant. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

2.4.1. Preprocessing

Given a number of samples, of which each belongs to one of
two possible classes, a classifier attempts to learn the underlining
sample-class mapping (Murphy, 2012). Samples are N-dimensional
vectors, while classes are labels with two possible values {class 1,
class 2}. In the present study, the task of the classifier was to assign
the identity (“correct name”) to each movie, based on the seg-
mentation judgments. This means that the segmentation judg-
ments served as N-dimensional samples, and the classes were the
correct name of the movie. However, the segmentations do not
have a constant number of dimensions, as each participant may
make a different number of segmentation judgments in the same
movie (i.e., participants responded more or less often for each
movie). To achieve the same vector length for each sample (i.e.,
each segmentation instance for each movie for every participant),
we used a Fourier approach which, given a movie and a subject,
obtained the probability of the subject placing a segmentation
judgment at any time point for that movie, in essence a temporal
profile of the typical response behaviour (this smooth probability
function for the example movie is depicted in the red line in Fig. 1).
This probability function has a fixed number of dimensions (each
time point is a dimension). In more detail: using formal nomen-
clature, the segmentation response of subject S, when watching
movie M in trial T is eSMT (t), and can be described as a sequence
of §-dirac functions (6 functions are also commonly referred to as

1 segmentation at time ’t’)

0 otherwise

A smooth probability density function (i.e., pSM(t)) is the nat-
ural result of representing a function of time with only the first
few components of its Fourier transform (Diniz et al., 2010). This
function estimates the probability of the subject pressing the
segmentation button at time t for that given movie. The following
four steps were implemented to derive this function: In a first step,
we calculated the Fourier transform of eSMT (t):

Esur (f) = ), exp( — 2aft)
t=1

stick functions): esyr = (

where f are the different Fourier components, evaluated at fre-
quencies 1Af, 2Af...,with Af=1000 divided by the total duration
of the movie. In simple terms, Fourier transforms allow to generate
a soft approximation of the signal described in the sets of &
functions. In the next step, we picked only the first 8 components

of this transform to achieve a smooth representation. We chose
8 components because this provided time profiles that were
smooth enough for the averages to converge. However, getting a
few more or less components did not change the results of the
overall analysis. Only using either very few components ( <4) or
too many ( > 20), will hampered the classifier's performance-and
it is then impaired in all conditions (for PD and controls), as the
time profiles will change either too slowly with time (for <4 all
movies will render the same time profile) or too fast (for > 20
different segmentation profiles of the same movie will start to
diverge). Third, for each subject and movie, we averaged these
8 components across trials:

Psu(f) = Y Eswr (f)
T

The fourth and last step was to apply the inverse Fourier
transform to obtain the temporal profile of this signal:
8Af

Pa(t)= )
F=1Af2Af,...

exp(2xft)

As we eliminated the elements containing the high frequency
components of the original  functions, we obtained a smooth
version of the segmentation times (this is a general property of the
Fourier transform and of low-pass filters). Assuming that the
probability of pressing the segmentation button changes slowly
over time, this effectively created an estimation of this probability
based on the eSMT samples (please refer to Fig. 1 for the depiction
of a smooth probability-density function achieved in this way).

2.4.2. Classification

For each movie M, we selected 30 equidistant time points, with
a separation equal to 1/30 of the total length of that movie as input
dimensions for the classifier. The purpose of the classifier was then
to test whether it could assign the movie class (identity) correctly
based on the information from these 30 dimensions (Fig. 3). In
simple words, the question is whether the classifier can, for ex-
ample, identify that it is presented with the temporal profile of
segmentations (segmentation pattern) of the movie that shows an
actor doing the dishes based on its training with the temporal
profile of button-press probabilities for all movies, including the
dishes movie.
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This setup of movie-based classification allowed us to use the
classifiers to measure how consistent participants within each
group segmented movies. To this end, we iteratively selected one
subject from the group and two movies, which served as the two
classes that the classifier had to identify. We trained the classifier
on all subjects (excluding the selected one), and measured whe-
ther it could correctly classify the probability-density function
(temporal profile of response-probability) of the selected partici-
pant as one of the two movies. We repeated this leave-one-out
training/testing procedure (also referred to as jack-knife approach)
for all possible pairs of movies and for all participants in the given
set of subjects. The obtained average number of correct classifi-
cations indicates how consistent the segmentation of movies was
within this group of subjects.

A modification of this classification procedure allowed us to
test how consistent segmentation is across two groups, A and B. To
this end, we selected all the subjects of group A except for one as
the training sample in the classifier, and tested the classifier's
ability to predict movie identities for the matched subject of group
B. This means, for example, that we trained the classifier with the
segmentations from PD patients 2-16 and tested its ability to as-
sign the correct label to segmentation patterns derived from the
matched control of PD patient 1. The latter approach was used to
measure whether the segmentations performed by PD patients
(group A) were consistent with controls (group B).

Semantic association control task

3. Results
3.1. Descriptive statistics

In the segmentation task, PD patients segmented each action
movie on average 10.4 times in their medication ON status and
9.8 times in their OFF status. Healthy controls segmented the same
movies on average 12.2 times in the pseudo ON and 12.9 times in
the pseudo OFF status. The time interval between two segmenta-
tion judgments was on average 9.5 s in ON status and every 10.5 s
in OFF status. For the healthy controls, segmentation interval was
on average 9.6 s in pseudo ON and 11.4 s in pseudo OFF. We ana-
lysed the number of segmentations for each group (PD/CONTROL)
in each medication status (ON/OFF) using a repeated-measures
ANOVA with between-subject factor GROUP and within-subject
factor MEDICATION STATUS and found no significant main effect
or interaction (all Fi1,30) < 1). These results indicate no strong dif-
ferences in segmentation behaviour, i.e., PD patients did not seg-
ment significantly less often than controls, irrespective of medi-
cation status.

A correlation analysis was conducted on the number of re-
sponses for each movie and for each of the two instances of the
segmentation task in each session, per participant. This yielded an
average within-session segmentation-judgment reliability of
r=.86 (p=0.045) for PD patients ON medication, r=.87 (p=0.039)
OFF medication, r=.74 (p=0.19) for healthy controls in pseudo ON,

Semantic association control task
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Fig. 4. Patients’ and controls' performance in the three control tasks. Legend: Performance in all control tasks across groups. There were no main effects of group or

medication status in any of the tasks.
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Fig. 5. Segmentation agreement across sessions and medication status for PD patients and controls. Legend: Segmentation agreements, for each participant group (PD - red
line/controls - blue line), in each medication status (ON/OFF), for each segmentation instance (first/second). The cumulative distributive function is a random variable,
displaying the area under the curve calculated from the combined agreement histograms for each group. Considering for example agreement scores in the first segmentation
instance ON medication (upper left panel), a probability of agreement of 0.2 is the case in ~23 datasets or less (see dotted lines) both for PD patients and for healthy controls
(the red and blue lines are aligned). A Kolmogorov-Smirnov showed that the only significant difference was a comparatively lower segmentation agreement for PD patients
in the first instance OFF medication (lower left panel), compared to healthy controls in this condition. This deficit is absent during the second segmentation instance in the
same session (lower right panel). Additional tests show that this difference is the only statistically significant difference with window sizes varying between 1 and 2.3 s. For
larger window sizes, all significant differences disappear. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this

article.)

and r=.88 (p=0.031) for healthy controls in pseudo OFF. We
conducted a repeated-measures ANOVA on within-session corre-
lation with the between-subject factor GROUP and within-subject
factor MEDICATION STATUS and found no significant main effect
or interaction (all F(1,30)<1). All correlation coefficients were
Fisher z-transformed for group statistics.

3.1.1. Cognitive control tasks

We analysed participants' reaction times and accuracy-mea-
sured as percent of correct responses-in 6 different repeated-
measures ANOVAS (Fig. 4). Each ANOVA contained the data from
the patient population and their matched control (between-sub-
ject factor GROUP) under both medication conditions (within-
subject factor MEDICATION STATUS). In the Semantic association
control task, we found no significant main effect (all F1,30)< 1) of
GROUP or MEDICATION STATUS and no significant interaction for
accuracy rates. Reaction-time data likewise yielded no significant
main effect (all F1,30)< 1) and no significant interaction.

We found no indication of a difference in accuracy in the Epi-
sodic recognition control task, with no significant main effects (all
Fa30)< 1) and only a trend-level interaction of GROUP and MED-
ICATION STATUS (F1,30y=3.199, p=0.08). In the reaction-time data,
we also found no significant main effect (GROUP F 30)=1.3,
p=0.26, MEDICATION STATUS F1,30) < 1). There was no significant
interaction (F1,30)< 1).

Finally, the Action prediction/association control task yielded a
marginally significant effect of GROUP in the accuracy data (F 30,
=3.84, p=0.059), but no main effect of MEDICATION STATUS and
no interaction (both F 30y < 1). In the reaction time data, we found
no main effect (all Fy30y< 1) and no significant interaction
(F1,30)=2.73, p=0.1). In sum, the results from the control tasks did
not show a specific impairment in any group under any condition
for functions which have to be considered necessary abilities for
the action-segmentation task: the ability to retrieve associations in
general and in relation to actions, and the ability to learn about
new action episodes. The latter may be necessary to engage in a
compensatory strategy, as we will discuss later on.

The number of trials in all control tasks was very limited to
reduce the time spent under medication withdrawal. This means
that the test may have had not enough power to detect an im-
pairment of function on the single-subject level. However, taken
together with the results of the PANDA tests, which showed that
no participant suffered from dementia (including associative
learning and working memory abilities), and given that all parti-
cipants performed extremely well (mean accuracy higher than 80%
in all tasks), there is no compelling reason to assume that PD
patients were impaired in action recognition, semantic retrieval, or
episodic memory. These results permit no inferences on whether
action recognition, semantic retrieval, or episodic memory can be
impaired in PD. But they suggest that in the present population
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differences in behaviour established in the analysis of segmenta-
tion agreement and the classifier analysis were not driven by
substantial impairments in these functions.

3.1.2. Segmentation agreement

The above reported analyses of segmentation frequency per
movie and within-session correlation coefficients for segmenta-
tion frequency show that PD patients display consistency in their
segmentation behaviour across ON and OFF status. At the same
time, it is evident that the number of segmentations does not
convey any information about segmentation location. In contrast,
the following analysis and the classifier approach both used
measures that were sensitive to the exact time-point of segmen-
tation responses.

We used a time-window approach to measure within-group
segmentation agreement. Given a segmentation judgment'a’, this
approach measures how often other subjects also placed a seg-
mentation judgment within a given time window around ‘a’. This
delivers a measure of normativity: when, for a given movie, a
participant segments close to the time when many other subjects
also make a segmentation judgment, the participant's segmenta-
tion is in agreement with the population (see Methods and Fig. 2
for details, and Kurby et al., 2014 for a closely related approach).

The histograms in Fig. 5 show the segmentation agreement for
PD patients and healthy controls in ON and OFF sessions, divided
for the first and second segmentation instance for each movie.
Interestingly, when PD patients were tested in their first session
OFF medication, they showed significantly less agreement than
control participants who segmented a movie for the first time
(Kolmogorov-Smirnov; p-value=0.0061; ks-stat 0.073). In Fig. 5
(lower left), this is evident because many segmentation judgments
made by PD patients OFF medication in their first segmentation
instance agree only with 10-30 segmentation judgments placed
by other participants (i.e., only 10-30 other subjects placed a
segmentation within the time window). However, there was no
difference between groups' segmentation agreement the second
time they segmented the movie. Tested ON medication, PD pa-
tients did not differ from healthy controls in their segmentation
agreement scores for both the first and second segmentation (re-
gardless the width of the time-window). The results shown in
Fig. 5 are based on a time window of 1.5 s half-width. This result
holds for all window widths between 1 and 2.3 s. No statistically
significant performance decrement for PD patients in any medi-
cation or segmentation-instance condition with wider windows

accuracy (% correct classified)

off-on

on-on

on-off

was observed.
3.2. C(lassifier analysis

We used a classifier analysis to assess how consistent seg-
mentation patterns were within and across our four groups (PD
patients ON vs. OFF medication, healthy controls in pseudo ON vs.
OFF session). These classifications produced 16 averages as shown
in Fig. 6. Averages were calculated across all the possible leave-
one-out splits of the data for the training-group-A/testing-group-B
classification. All of these classification performances were higher
than 80% and t-tests showed that all of them were significantly
different from chance at p <10 ~'* (Table 4). This allows the first
inference that the commonalities in segmentation patterns far
outweighed the differences, as the classifier would otherwise have
performed at chance level (it would have “guessed” movie
identity).

To test for any possible effect of training group, testing group,
or medication status, we ran a 4-way ANOVA with the factors:
(i) TRAINING GROUP (PD/CONTROL), (ii) TESTING GROUP (PD/
CONTROL), (iii) MEDICATION STATUS TRAINING GROUP (ON/OFF),
and (iv) MEDICATION STATUS TESTING GROUP (ON/OFF).

The first classifier did not include measures of motor impair-
ment and classified solely on the dimensions derived from the
smooth probability-density function for segmentation behaviour.
This analysis yielded a significant main effect of TRAINING GROUP
(F1,15)=6.99; p=0.009, a marginally significant main effect of
TESTING GROUP (F1,15y=3.4, p=0.066, but no further main effect
and no significant interaction. In a second classifier, we included
standard deviation in reaction time in the motor control tasks as
an additional dimension, to account for higher motor variability
under dopamine-replacement withdrawal. This step is necessary
to link potential between-group differences to cognitive changes.
This classifier showed again a main effect of TESTING GROUP
(F1,15y=12.39, p=0.001), but no other main effect (all F < 1, except
main effect of training group at F,15)=1.15, p=0.28), and no sig-
nificant interaction (all F < 1, except interaction of testing group by
training group at F,14)=144, p=0.23).

Lastly, we repeated this second approach, using the standard
deviation sigma from an ex-gaussian fit to the reaction-time data
from the motor control task. Sigma in an ex-gaussian model of
reaction-time data captures the amount of variance in the data.
This analysis (Fig. 6) likewise yielded a significant main effect of
TESTING GROUP, (F1,15y=7.84, p=0.001), but no other significant

— Tested on
off-off i
Patients Controls

_ Patients [N
Trained ONcontrols -

Fig. 6. Classifier performance for within and between group classification ON and OFF medication. Legend: Classifier performance for all tested combinations of training and
testing group under all medication conditions. Classification performance for classifiers trained on patients displayed in dark colours, classifier performance for classifiers
trained on controls are displayed in lighter colours. Performance of classifiers tested on patients displayed in red and performance of classifiers tested in controls displayed in
blue. Medication status in training or testing is indicated by location on the x-axis. on-on: training and testing on medication; off-on: training off, testing on; on-off: training
on, testing off; off-off: training and testing off medication. The y-axis starts at 50%, i.e., chance level; error bars show the standard error of the mean. Classifiers tested on
controls' data achieve a slightly higher performance (main effect of TESTING GROUP). (For interpretation of the references to color in this figure legend, the reader is referred

to the web version of this article.)
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main effect or interaction.

4. Discussion

The present study investigated whether PD patients would
display behavioural impairments in an action segmentation task,
which requires the exploitation of structured semantic action re-
presentations and the generation and evaluation of predictions of
forthcoming events. We expected that PD patients would show
some temporal variability around segmentation points (1), but
that the temporal pattern emerging from these segmentation
points would be nearly indistinguishable between PD patients and
healthy controls (2). We found evidence for both hypotheses in the
present study. When participants were asked to segment action
movies at meaningful boundaries, classifiers trained on the tem-
poral pattern of segmentation responses were able to classify
movie identity far above chance, for both training (PD or healthy
controls) and testing groups (PD or healthy controls), under either
medication status (ON/OFF). This core finding strongly suggests
that PD patients have access to and exploit the same action
knowledge as healthy controls in action segmentation.

As predicted by our first hypothesis (temporal variability),
classifier performance was slightly decreased (while still far above
chance) when it was tested for its ability to predict the identity of
movies segmented by PD patients. This subtle change in perfor-
mance indicated that PD patients' data contained more variability
at segmentation points, thereby becoming marginally less pre-
dictable in classification. Importantly, this finding stands when
motor variability, assessed in a separate motor control task, is
accounted for by the classifier. Thus, this finding suggests that the
difference between the two groups is caused by cognitive changes
rather than a consequence of altered motor behaviour in PD. No-
tably and against expectations, this small deviation was not lim-
ited to a specific medication session.

Indeed, we found that segmentation in PD patients reached
lower agreement scores only during the first of two segmentation
instances in the OFF state. This lack of agreement with the average
segmentation, or non-normativity, was not, however, present
during the second segmentation instance in the OFF state, or any
segmentation instance in the ON state. This striking pattern of a
one-time-exposure training effect supports the idea that patients
can use episodic memory for the content of the action sequence to
compensate. Because we find this compensation in dopaminergic
OFF state, it is likely to rely on a brain network that does not
critically depend on dopaminergic innervation.

4.1. PD patients exploit the same action knowledge as healthy con-
trols when segmenting action movies

Action segmentation relies on semantic action knowledge
(Zacks et al., 2006; Kurby et al., 2014; Bailey et al., 2013). Learning
and retrieving this action knowledge is associated with a network
including the lateral prefrontal cortex and temporo-parietal areas
(Binder et al., 2009; Buxbaum et al., 2007; Buxbaum et al., 2005).
Recently, there has also been evidence for a hippocampal in-
volvement (Schubotz et al., 2012), a region classically associated
with episodic memory.

The putative role of the hippocampus is of particular interest
since it is well established that although PD patients have diffi-
culties to learn from (positive) feedback and compensate strate-
gically for this impairment via explicit learning of stimulus-out-
come contingencies (Shohamy et al.,, 2008). Learning response-
outcome contingencies from feedback integration is assumed to
rely on the basal ganglia and to involve the dopaminergic mid-
brain, while the suggested compensatory strategies are mediated

by the hippocampus (Dagher et al., 2001; Shohamy et al., 2008;).
Clearly, attributing all compensatory function in PD to a hip-
pocampal network is not warranted. This is not least because the
hippocampus receives dense dopaminergic projection and the
degree to which a potential decrease in innervation in PD could
alter hippocampal function remains unclear (Jay, 2003 for review).
Further, it has been shown that hippocampal volume can be de-
creased in PD, especially in elderly patients and patients suffering
from dementia (Briick et al, 2004; Camicioli et al., 2003;
Churchyard and Lees, 1997-please note that the PD patients in the
present study did not suffer from dementia or memory problems).
These findings suggest that hippocampal function may be im-
paired in PD, which could potentially have implications for the
availability of hippocampal compensation mechanisms.

In contrast, the possibility that a hippocampal learning and
memory mechanism may indeed be involved in compensation in
this specific task is suggested by the episodic nature of the de-
crease in non-normativity: normativity scores in patients in the
OFF status made a full recovery as soon as they had segmented the
same movie one single time before. Lastly, the proposal that epi-
sodic memory can aid action segmentation and that this process is
associated with the hippocampus receives some support from a
study which showed non-normative segmentation behaviour in
participants with decreased medial temporal lobe volume (Bailey
et al., 2013). Thus, whether decrease in non-normative behaviour
is in fact hippocampally mediated remains an open and exciting
research question. An empirical study using classifiers to achieve a
double dissociation between PD patients and patient groups with
dementia would be highly desirable.

In light of the present results and our previous fMRI data
(Schubotz et al., 2012), we propose that action segmentation based
on action semantics and episodic memory relies on a network
including prefrontal cortex (Grafman, 2003; Schubotz et al., 2012),
cortical areas involved in action representation (Decety et al., 1997;
Spunt et al,, 2010; Watson and Chatterjee, 2011; Hoffman et al,,
2012), and the hippocampal formation (Schubotz et al.,, 2012 cf.
Bailey et al., 2013). Intact dopaminergic innervation of the basal
ganglia (and prefrontal cortex) does not appear essential for action
segmentation, but is important for the precise timing of the re-
sponses, particularly when no episodic memory for the sequence
can be accessed. These results complement a series of studies
which has shown that PD patients are impaired in motor imagery
(Poliakoff, 2013), i.e., when they have to internally initiate action
representations-a process similar to the initiation of predictions of
external (action) events. However, PD patients are not impaired in
action observation (Poliakoff, 2013), as shown for example by the
finding that the observation of another agent's actions affects
performance of a motor tasks in PD patients just as it does in
healthy controls (Albert et al., 2010).

4.2. Prediction errors and sequential prediction

The proposed role of the basal ganglia in the generation, se-
lection and timing of forward models of probable forthcoming
events (Redgrave et al., 1999; Bischoff-Grethe et al., 2003) led us to
hypothesise an increased variability at a fine timescale in the
segmentation behaviour of PD patients. This hypothesis was sup-
ported by the classifier analysis.

However, an alternative account of basal ganglia involvement
in action segmentation would also lead to the prediction of in-
creased variability: The Event Segmentation Theory (EST, Zacks
and Swallow, 2007; Kurby and Zacks, 2008; Zacks and Sargent,
2010) proposes basal ganglia involvement in signalling prediction
errors when unlikely but salient events occur. According to EST,
the end of events is signified by prediction errors (‘ES prediction
errors’, hereafter). The underlying theory is that internal forward
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models of one event become imprecise when the new event be-
gins, which leads to ES prediction errors. EST therefore argues that
compromised basal ganglia function leads to disorganised seg-
mentation behaviour (Zacks and Sargent, 2010), as a lack of do-
paminergic error signalling prevents the inference that an event
boundary has been passed.

In contrast, we would argue that naturalistic events such as
actions are usually probabilistically structured (Csibra, 2007;
Colder, 2011; Botvinick and Plaut, 2004; Kilner et al., 2007, 2004),
i.e,, that the occurrence of one event makes certain events more
probable, while other events are rendered less likely. Accordingly,
probable upcoming actions do not constitute a violation of pre-
dictions. Moreover, most events are associated with (and thus
expected to have) a set approximate duration. Hence, in naturally
timed and canonical action sequences such as our action movies,
expectations remain usually unviolated.

The understanding that transitions between actions steps are
probabilistic or even near-deterministic in character relates to
concept of action hierarchies (Botvinick et al.,, 2009; Schwartz,
2006; Grafman, 2003; but see Botvinick and Plaut, 2004). An
overarching action goal like, e.g., tidying the kitchen, is composed
of a series of action components, each with its own goals such as,
e.g., clearing away the dishes and tidying the shelves. Again, each
of these actions may comprise different subgoals, such as opening
the dishwasher, getting a plate out, opening the cupboard, putting
the plate into the cupboard, etc... It has not been spelled out yet at
which level of this hierarchy dopaminergic ES prediction errors are
to be expected. However, experiments that did vary the hier-
archical level on which participants had to segment did not report
basal ganglia activity for either coarse (high level) or fine grained
(low level) segmentation (Zacks et al., 2001).

In the present study, we could establish that PD patients, both
ON and OFF medication, show segmentation judgments that are
highly similar to controls' judgments and thus seem to rely on the
same structured action knowledge. This finding is difficult to re-
concile with the proposal that event segmentation has to rely on
dopaminergic ES prediction errors. Moreover, while PD patients
OFF medication segmented less normatively if a movie was com-
pletely unknown to them, this deviation was not present for the
second segmentation instance; this finding speaks against the idea
that action segmentation has to rely on intact dopaminergic in-
nervation. Accordingly, we propose that the basal ganglia play a
role in the fast generation of timed predictions for probable next
sensory states and their evaluation based on the present sensory
input.

This account suggests that the probabilistic structure of actions
results in the presence of a number of weighted forward models
for probable next action steps in the basal ganglia circuits (see
Frank, 2006; Frank and Claus, 2006; Frank et al., 2007 for a com-
putational model of weighted forward models in the basal ganglia
for goal-directed behaviour). Because the weighing of these
probabilities and their generation is dependent on dopaminergic
input, PD patients would be compromised in fast decisions on
whether a present sensory input (according to the next action
step) is in line with, or deviant from, specific forward models.

4.3. The anatomic specificity of patient data

Ascribing function to a specific brain area based on data from
participants with neurological changes has some limitations; one
of many is that the multitude of changes associated with a dif-
ferent neurological conditions make it difficult to ascertain which
affected structure is causally relevant for the specific impaired
function. Parkinson's disease is associated with changes not only
to the basal ganglia, but also to the prefrontal cortex and hippo-
campus (Briick et al., 2004; Camicioli et al., 2003; Churchyard and

Lees, 1997; Emre, 2003; Scatton et al., 1982). While models of basal
ganglia and premotor function drove our hypothesis, our results
can obviously not discern the changes to which structure underlie
the established changes in behaviour. In fact, internally driven
prediction of external events and timing of predictions may well
rely on interplay of basal ganglia, thalamus and prefrontal/pre-
motor cortex (Lewis et al., 2003; Schonberger et al., 2013).

4.4. Showing similarity and highlighting differences: The use of
classifiers in patient studies

Every study that tests for the ability of patients to perform a
task just as well as healthy participants suffers from a conundrum:
It is statistically unsound to test for the validity of the null-hy-
pothesis (Cohen, 1994). The present study circumvents this pro-
blem by taking a new approach in implementing a classifier ana-
lysis. The idea of this classifier analysis is that if the algorithm
learns classification from patient data and this classification is
then successfully applied to the data from healthy controls (or vice
versa), similarities between the groups has to be considerably
high. In fact, in our case it shows that each action movie has a
distinct temporal profile of segmentation judgments that makes it
different from all other movies. These profiles of the same movie
produced by different people were very similar, regardless whe-
ther they reflect the behaviour of healthy controls, medicated PD
patients, or PD patients off their dopaminergic medication. In the
present study, these findings are supported by the correlation
analyses that indicate high reliability. The correlation analyses’
findings, as well as the segmentation agreement estimation, fall
short of the classifier in that they cannot deliver evidence whether
what patients do reliably is, in colloquial terms, the same thing
healthy controls do reliably. The classifier yields just this
distinction.

We believe these very positive results mark classifiers as a
valuable tool to investigate hypotheses that propose that patients
are not compromised in a given ability. This type of analysis is
particularly appropriate for paradigms that provide rich data, for
example, behavioural paradigms which assess reaction times, er-
ror rates, and subjective judgments (e.g., confidence judgments)
for each task, or-perhaps more obviously-studies combining be-
havioural data and neural recordings. We included classic statis-
tical approaches in the present paper to show that the classical
and the novel approach yield similar results. Since the classifier
approach is a positive test for the presence of an effect (classifi-
cation), we suggest that it surpasses the argumentative power of
non-significant findings inherent to many inference statistic
approaches.
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