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a b s t r a c t 

Surprising scenarios can have different behavioural and neuronal consequences depending on the violation of 

the expectation. On the one hand, previous research has shown that the omission of a visual stimulus results in 

a robust cortical response representing that missing stimulus, a so-called negative prediction error . On the other 

hand, a large amount of studies revealed positive prediction error signals, entailing an increased neural response that 

can be attributed to the experience of a surprising, unexpected stimulus. However, there has been no evidence, 

so far, regarding how and when these prediction error signals co-occur. Here, we argue that the omission of 

an expected stimulus can and often does coincide with the appearance of an unexpected one. Therefore, we 

investigated whether positive and negative prediction error signals evoked by unpredicted cross-category stimulus 

transitions would temporally coincide during a speeded forced-choice fMRI paradigm. Foremost, our findings 

provide evidence of a behavioural effect regarding the facilitation of responses linked to expected stimuli. In 

addition, we obtained evidence for negative prediction error signals as seen in differential activation of FFA 

and PPA during unexpected place and face trials, respectively. Lastly, a psychophysiological interaction analysis 

revealed evidence for positive prediction error signals represented by context-dependent functional coupling 

between the right IFG and FFA or PPA, respectively, implicating a network that updates the internal representation 

after the appearance of an unexpected stimulus through involvement of this frontal area. The current results are 

consistent with a predictive coding account of cognition and underline the importance of considering the potential 

dual nature of expectation violations. Furthermore, our results put forward that positive and negative prediction 

error signalling can be directly linked to regions associated with the processing of different stimulus categories. 
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. Introduction 

In our everyday life, surprise takes different forms. Consider the sit-

ation in which the doorbell rings and you go open the door. Different

urprising scenarios are conceivable: (a) you face a stranger who took

he wrong door; (b) you find nobody waiting outside (being victim of

 knock-a-door-run, presumably); (c) you experience a double surprise

ecause it’s not the friend you expected but a package deliverer who

ook the wrong door. The latter example illustrates that in everyday life,

he omission of an expected stimulus can – and often does – temporally

oincide with the appearance of an unexpected one. 

Recent neurocognitive models describe perception as a process of in-

erence where top-down predictions are compared with bottom-up sen-

ory evidence along the visual cortical hierarchy to constantly update

ur internal model of the outside world ( Clark, 2013 ; Friston, 2005 ). It

as been suggested that this process is carried out by two distinct classes
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f neurons. Internal representation neurons forward predictions regard-

ng the conditional probability of a stimulus to a lower level whereas

rediction error neurons encode the mismatch between the predictions

nd actual bottom-up information and propagate this prediction error

o the next higher level ( Egner et al., 2010 ). To facilitate cognition, only

iolations of our expectations ( “prediction errors ”) are propagated up-

ards the cortical hierarchy to update internal representations at the

ext higher level. 

Referencing back to the surprising scenarios mentioned previously,

hese so-called prediction errors can either be positive or negative de-

ending on the nature of the violation ( Keller and Mrsic-Flogel, 2018 ).

ositive prediction error neurons are activated when bottom-up input

ncreases unexpectedly, for example after the presentation of an unex-

ected visual stimulus. As opposed to that, the activation of negative

rediction error neurons represents an unexpected decrease of sensory

nput, for example when a stimulus has been unexpectedly omitted.
 March 2021 
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hile the distinction between positive and negative prediction errors is

rmly established in the field of reward prediction (errors), researchers

ut forward that prediction error signals occur independently of rewards

 Gardner et al., 2018 ; Schiffer et al., 2015 ) . Consequently, a more gen-

ralised concept has been introduced to account for findings showing

he presence of prediction errors for unexpected and novel stimuli in

he absence of rewards ( Horvitz, 2000 ; Menegas et al., 2017 ). 

Up until today, most previous studies in this field focused on only

ositive (e.g., Amado et al., 2016 ; Egner et al., 2010 ; Meyer and

lson, 2011 ) or only negative prediction errors ( Fiser et al., 2016 ;

en Ouden et al., 2012 ; Eliades and Wang, 2008 ; Stanley and Mi-

ll, 2007 ). One reason for this might be the difficulty of designing ex-

eriments that can simultaneously differentiate between the neuronal

rocesses associated with both types of prediction errors. However, we

hink that it is important to consider the potential interplay of both pos-

tive and negative prediction error signals as this parallel processing

ight imply, that in fact, error computations within the brain are car-

ied out by two separate prediction-error circuits: One processing the

nexpected omission of a visual stimulus and one processing the unex-

ected appearance of another stimulus ( Keller and Mrsic-Flogel, 2018 ;

ao and Ballard, 1999 ). Moreover, it is conceivable that depending on

he context the processing of positive prediction errors is favoured over

he processing of negative prediction errors when for example the ap-

earance of the unexpected stimulus is more relevant for our behaviour

han the omission of a competing stimulus. 

Therefore, the aim of the current fMRI study was to investigate the

ffects of positive and negative prediction errors during implicit expec-

ation violations of cross-category stimulus associations. More specif-

cally, we examined fMRI blood oxygenation level-dependent (BOLD)

esponses during a speeded forced choice task while participants im-

licitly predicted face or place stimuli generating positive and negative

rediction errors. 

Several previous studies have shown that face and place stimuli are

rocessed in two distinct brain areas. Faces are preferentially processed

y the fusiform face area (FFA) ( Haxby et al., 2000 ; Liu et al., 2002 ),

hereas place and house stimuli elicit higher activations in the parahip-

ocampal place area (PPA) ( Epstein and Kanwisher, 1998 ; Ishai et al.,

000 ). Moreover, both imagery and expectation of faces and places lead

o activity increases in FFA and PPA, respectively ( Esterman and Yan-

is, 2010 ; O’Craven and Kanwisher, 2000 ). Introducing these two dis-

inct stimulus categories enabled us to investigate differential brain re-

ponses resulting from an omitted stimulus category (e.g., a face) and,

t the same time, looking at brain activation resulting from an unex-

ectedly presented stimulus from the other category (e.g., a place). 

In addition to stimulus-specific prediction error signals in FFA and

PA, we expected frontal areas to respond to expectation violation, es-

ecially the right IFG. Activity in this area has been found to gener-

lly increase for prediction errors in different modalities ( Chao et al.,

018 ; Trempler et al., 2020 ) presumably scaling with the amount of

odification needed to adapt the current predictive model accordingly

 Alexander and Brown, 2018 ; El-Sourani et al., 2019 ; Keller and Mrsic-

logel, 2018 ). 

Before fMRI scanning, participants were trained to implicitly learn

he probability of the two category transitions within a sequence of

ace and place stimuli, which occurred at the same base rate. Crucially,

ithin-category transitions (face-face and place-place) occurred with a

uch lower probability than between-category transitions (face-place

nd place-face). For these more expected stimuli, faster reaction times

nd higher accuracy levels were hypothesised. With regard to BOLD

MRI, we hypothesised to find both evidence of positive and negative

rediction errors during expectation violation. By using two distinct

timulus categories, we were able to test positive and negative predic-

ion errors within different category-specific areas, namely the FFA and

he PPA: for unexpectedly as compared to expectedly appearing stim-

li, we hypothesised a positive prediction error as reflected in a BOLD

ncrease in the brain region preferentially processing this stimulus cate-
2 
ory and at the same time, a negative prediction error as reflected in a

OLD increase in the brain area that was non-preferentially processing

he current stimulus category representing the omitted stimulus cate-

ory. Here, activity evoked by a face stimulus represents “preferred ”

eta activity in FFA and “non-preferred ” beta activity in PPA. The same

pplies to place stimuli where “preferred ” activity can be observed in

PA and “non-preferred ” activity in FFA. Furthermore, we were inter-

sted in changes in functional connectivity between stimulus-specific

rediction error signals in PPA and FFA and the right IFG that has pre-

iously been implicated to play an important role in model updating and

rror processing (e.g., El-Sourani et al., 2019 ). To this end, we conducted

 psychophysiological interaction analysis (PPI) and examined whether

xpectation violation modulates the functional connectivity between the

FA and PPA on the one hand, and the right IFG on the other hand. 

. Materials and methods 

.1. Participants 

Thirty-four volunteers (25 females) participated in the current study.

ll participants were right-handed as assessed by the Edinburgh Hand-

dness Inventory ( Oldfield, 1971 ). After initial inspection of the be-

avioural data, one participant was excluded from all further analyses,

ecause of comparably low performance levels (accuracy more than 2

Ds below the mean accuracy level of all other participants). The re-

aining 33 participants (24 females) were between 18 and 35 years of

ge ( M = 24; SD = 3.49). All participants had normal or corrected-to-

ormal vision and no history of neurological or psychiatric disorders. Be-

ore participation, all volunteers gave written informed consent. Partici-

ants were debriefed and reimbursed after taking part in the fMRI exper-

ment. The study was performed following the Declaration of Helsinki

nd had been approved by the ethics committee of the University of

uenster. 

.2. Stimuli 

In total, 32 photographs were used in the current paradigm. We em-

loyed 16 unique, colour photographs of faces (8 females, 8 males)

ith neutral facial expression and 16 unique place images (8 indoor,

 outdoor). Since our participants usually identify as female/women or

ale/men, we wanted to make sure that pictures of both women and

en were included in the stimuli used for the paradigm. Subsequently,

e also included two subcategories for the place stimuli, indoor and

utdoor, respectively. 

Face stimuli were drawn from the Radboud Face Database

 Langner et al., 2010 ). Place images were collected from the internet

nd, like the face images, cropped and resized using GIMP. All stimuli

ere individually displayed in the centre of a uniform grey background.

.3. Trial sequence and task design 

The stimulus randomisation was programmed using Matlab (Version

2018a; The MathWorks Inc., Natick, MA, USA). Stimuli were presented

nd participants’ responses recorded using the Presentation Software

Version 18.1, Neurobehavioral Systems, Inc., Berkeley, CA). The 32

hotographs were randomly assigned to two different stimulus sets. In

oth sets, 16 images including four photographs of each category (fe-

ale, male, indoor, outdoor) were repeated eight times resulting in 128

rials per block. To introduce statistical regularities, we manipulated the

ransitional probabilities of the stimulus sequences. Transitions were ei-

her within- or between-category so that a face followed a face (within-

ategory) or a place stimulus (between-category) and a place followed

ither a place (within-category) or a face stimulus (between-category).

he probability of within-category transitions was 35% whereas the

etween-category transition probability was 65% (Fig. 1). With this ma-

ipulation, we ensured that participants would be able to predict the
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Fig. 1. Example stimuli including stimulus transitions with their corresponding transitional probabilities and underlying time course. The “expected ” condition 

included between-category transitions (i.e., Face–Place; Place–Face) whereas the “unexpected ” condition included within-category transitions (i.e., Face–Face; Place–

Place.). The transition probabilities were independent of the subcategories (i.e., female/male; indoor/outdoor). For each trial, participants had to indicate the stimulus 

category (face or place) via a button press (left or right). 
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(  
ost likely succeeding stimulus category when presented with the cur-

ent stimulus. Hereafter, we will therefore call the 65% transition prob-

bility condition “expected ” and the 35% transition probability condi-

ion “unexpected ”. The paradigm contained additional manipulations,

ncluding reoccurring stimulus pairs of different probabilities that we

re pursuing separately. The pairs were imbedded in the more likely

timulus category transition meaning that they were formed by using

nequal stimulus categories. In total, there were eight stimulus pairs

onsisting of a particular face that was preceded by a particular place or

 particular place that was preceded by a particular face. In half of the

locks, the second stimulus followed the first stimulus in 100% of the

ases and in the other half the probability was 75%. This additional ma-

ipulation was included to investigate whether identity learning (that

ould follow the learning of the particular stimulus pairs) would be dis-

inguishable from category learning (that would follow the learning of

he probability of the category transitions). The inclusion of stimulus

airs was pursued in a different analysis, which was not part of this ar-

icle. Moreover, because of the specific nature of the pairs, we did not

xpect this manipulation to influence the present analyses in any way .

.4. Task 

All participants completed a 20-min training one day before the fMRI

ession. During the training, participants were exposed to the same stim-

lus sets that would later be presented in the fMRI session. The training

onsisted of four experimental blocks including two block repetitions of

he two different stimulus sets. The stimuli were presented on a com-

uter screen. The aim of this training was twofold: first, to familiarise

articipants with the task and second, to induce learning of the statis-

ical regularities of the stimulus sequence. Photographs were presented

or 350 ms with inter-trial-intervals (ITI) of 2000 ms. After each block,

articipants had a short break of 7 s. 

Before training, participants were told that we were investigating

ow the brain reacts while being exposed to different types of images.

y pressing one of two buttons, participants were asked to respond as

uickly and accurately as possible as to whether the shown photograph

as a face or a place on every trial. The button allocation determining

hich button represented which image category was counterbalanced

cross all participants. During the main task in the MR scanner, partici-

ants had to perform the same task. Here, photographs were shown for

50 ms followed by a jittered ITI of 3000, 3500, or 4000 ms. This time,
3 
articipants completed six blocks resulting in 768 trials in total and a

est session of about 50 min in the scanner. 

.5. FMRI data acquisition 

Whole-brain imaging data were recorded with a 3-T Siemens Magne-

om Prisma scanner (Siemens, Erlangen, Germany) using a 20-channel

ead coil. Functional blood oxygenation level-dependent (BOLD) im-

ges were acquired parallel to the anterior commissure/posterior com-

issure line with a T2 ∗ -weighted gradient echo planar imaging (EPI)

equence (64 × 64 data acquisition matrix; 192 mm field of view

FOV); 90° flip angle; time of repetition (TR) = 2000 ms; echo time

TE) = 30 ms). Each volume consisted of 33 adjacent axial slices with a

lice thickness of 3 mm and a gap of 1 mm, resulting in a voxel size of

 × 3 × 4 mm. Structural images were acquired for each participant us-

ng a standard Siemens 3D T1-weighted MPRAGE sequence for detailed

econstruction of anatomy with isotropic voxel size (1 × 1 × 1 mm)

n a 256-mm FOV (256 × 256 matrix, 196 slices; RT = 2130 ms;

E = 2.28 ms). Stimuli were projected on a screen that was positioned

ehind the scanner bore. They were presented in the centre of the field

f vision by a video projector, and participants viewed the screen by a

5° mirror, which was fixated on the top of the head coil and adjusted

or each participant to provide a good view of the entire screen. Par-

icipants’ right index and middle finger were placed on two response

uttons, matching the response contingencies from the training session.

articipants’ arms were stabilized on form-fitting cushions. Addition-

lly, foam padding around the head was applied to prevent motion

rtefacts. Earplugs and noise-cancelling headphones were provided to

educe scanner noise. 

.6. Data analysis 

.6.1. Behavioural data analysis 

The following behavioural analysis steps were applied to the training

ata as well as the behavioural data from the main experiment. Reaction

imes and accuracy (percentage of correct responses) analyses were per-

ormed with Matlab (Version R2019a; The MathWorks Inc., Natick, MA,

SA). Trials with no response and incorrect responses were categorised

s error trials. Additionally, we defined a maximum response window of

500 ms starting from trial onset during which participants’ responses

ere classified as valid as for example suggested by McKendrick et al.

2014) . Responses recorded after these 1500 ms were also categorised
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s error trials. Task performance reflected the mean percentage of cor-

ectly answered trials of all correct and error trials, which was calcu-

ated for expected and unexpected trials. Due to technical issues dur-

ng the recording of the training session of the first participant, we had

o exclude this participants’ behavioural data from the analysis of the

raining. Additionally, as already indicated earlier, one participant was

xcluded from all analyses because of comparably poor performance

75.46% correct responses). Therefore, 32 participants remained for the

nalysis of the training session and 33 participants remained for the

ain analyses. Since we hypothesised that responses for the expected

timulus categories would display an increase in accuracy aligned with

 decrease in reaction times, these two aspects of performance were

ubjected to Bonferroni corrected individual paired-samples t -tests. 

.6.2. FMRI data analysis 

Preprocessing: All preprocessing and statistical analyses were per-

ormed with SPM12 ( www.fil.ion.ucl.ac.uk/spm ) and custom Matlab

cripts (Version R2019a; The MathWorks Inc., Natick, MA, USA). For

ach participant, functional images were slice time corrected and spa-

ially realigned to the first volume. Structural images were coregistered

o the mean functional image and then used to calculate transforma-

ion parameters for normalising the functional images to the Montreal

eurological Institute (MNI) template brain. The normalised functional

mages (resampled at 3 mm 

3 ) were spatially smoothed with a Gaussian

ernel of full width at half-maximum of 6 mm 

3 . 

Region of interest (ROI) analysis: To analyse our main task we used

 summary statistic random effects approach. At the first level (within-

ubjects), we estimated parameters encoding condition-specific activa-

ions. This involved specifying stimulus functions for each trial type.

hese functions were then convolved with a canonical hemodynamic

esponse function to form our condition regressors. Separate regres-

ors were entered for faces and places as well as expected and unex-

ected trials resulting in ten different regressors: face_expected (FE; face

receded by a place), face_unexpected (FU; face preceded by a face),

lace_expected (PE; place preceded by a Face), place_unexpected (Place

receded by a Place) as well as six regressors for the motion parame-

ers (three translations and three rotations). In order to analyse BOLD

esponses with regard to our two ROIs (FFA and PPA), we used prob-

bilistic masks representing FFA and PPA, respectively, from the SPM

natomy toolbox ( Lorenz et al., 2017 ). Therefore, all ROIs were sta-

istically independent from our data. We then used these ROIs to ex-

ract each subject’s beta values of the activity associated with each

rial type during the main task. Since a profound amount of research

as shown that face images are dominantly processed by the right

emisphere ( Rossion, 2014 ; Bukowski et al., 2013 ; Bentin et al., 1996 ;

angarajan et al., 2014 ), we decided to include only the right FFA

nd correspondingly also only the right PPA as ROIs into our design.

herefore, beta values were subjected to a 2 × 2 × 2 repeated measures

NOVA with the factors: ROI (right FFA vs. right PPA), expectation (ex-

ected vs. unexpected), and preference (preferred vs. non-preferred).

his coding was adapted from previous studies looking at stimulus-

pecific activity with regard to expectation and surprise ( Yon et al.,

018 ). The three-way ANOVA was calculated to make sure that the ROIs

id not have a differential influence on the two factors Expectation and

reference, which were of main interest to us. To test whether unex-

ected stimuli modulated responses in the preferred or non-preferred

ondition, we implemented post-hoc contrasts of the conditions ex-

ected_preferred vs. unexpected_preferred and expected_non-preferred

s. unexpected_non-preferred as Bonferroni corrected paired two-sided

 -tests. Greenhouse–Geisser correction for sphericity violations were

sed for reported degrees of freedom and p -values where appropriate. 

Psychophysiological interaction analysis: We conducted a condition-

pecific psychophysiological interaction (PPI) analysis to investigate

he context-dependent functional coupling between the right IFG and

timulus-specific prediction error processing areas of our task. Specifi-

ally, we were interested in the functional coupling of the right IFG and
4 
ositive and negative prediction error related signals resulting from un-

xpected face or place stimuli FU > FE and PU > PE. We performed two

ndependent PPIs to be able to identify whether potential FFA and PPA

ctivity was reflecting positive or negative prediction error effects. To

efine our seed ROI, we constrained our search to a volume of interest

hat was based on the group fMRI analysis contrasting unexpected with

xpected trials ( U > E ) and functionally localised the right IFG using

he Anatomy Toolbox ( Eickhoff et al., 2005 ). This definition of our seed

OI followed a standard procedure described in O’Reilly et al. (2012) .

o this end, we extracted the time course of right IFG activity with a

 mm radial sphere using voxels that showed peak activation for the

ontrast ( U > E ); x = 51, y = 17, z = 17) with marsbar ( Poldrack, 2007 ).

urthermore, we extracted the first eigenvariate of our seed sphere and

llowed actual VOIs to vary in size between participants but restricted

hem to the first level masks. We then z -transformed the time course

alues and generated the PPI regressor by multiplying the physiologi-

al regressor (time course of right IFG) with the convolved psychological

egressors (FU > FE and PU > PE). For each participant, both the physio-

ogical and the PPI regressors were added to the original design matrix.

he resulting matrices were then entered into a random-effects group

nalysis in which the PPI regressor was tested. As we had strong a pri-

ri hypotheses about the areas of the brain regarding their involvement

n right IFG coupling during unexpected face and place trials, we used

he same independently defined ROIs (right FFA and right PPA, respec-

ively) as in the univariate analysis to correct for multiple testing (small

olume correction). According to our hypotheses, positive coupling be-

ween the right IFG and the right FFA and PPA during unexpected trials

ould imply the conjecture that the right IFG is updating the current

nternal model based on surprise. 

. Results 

.1. Behavioural results 

.1.1. Training 

Implicit learning of the transition probabilities between stimulus cat-

gories was already hypothesised for the training session. Therefore, this

earning should result in shortened response times as well as elevated

ccuracy levels for expected as compared to unexpected stimuli. This

as indeed the case, as response times for expected when compared to

nexpected trials were significantly faster (419.79 ms ( SD = 55.08) vs.

29.55 ms ( SD = 53.23), t (31) = − 2.82, p < 0.005). Additionally, partic-

pants showed higher accuracy levels (percentage of correct responses,

R) for expected vs. unexpected trials (93.26% CR ( SD = 15.47) vs.

1.20% CR ( SD = 14.64); t (31) = 4.17, p < 0.001). 

.1.2. Main experiment 

As for the training session, if implicit learning of the transitional

robabilities between stimulus categories would still be evident dur-

ng the main experiment, performance with regard to predictable trials

hould be facilitated. This pattern was observed in response times for

xpected vs. unexpected trials (576.46 ms ( SD = 89.85) vs. 589.59 ms

 SD = 86.53), respectively; t (32) = − 4.00, p < 0.001) ( Fig. 2 A). A facil-

tation effect could also be observed with regard to accuracy (CR). CR

as higher for expected vs. unexpected trials (97.05% CR ( SD = 2.77)

s. 95.16% CR ( SD = 4.19); t (32) = 4.44, p < 0.001) ( Fig. 2 B). 

.2. fMRI results 

The appearance of an unexpected stimulus should, on the one hand,

esult in a positive prediction error with regard to the regions’ preferred

timulus category (i.e., FFA activation for unexpected faces and PPA

ctivation for unexpected places) as well as a negative prediction error

ignal regarding the regions’ non-preferred stimulus category (i.e., PPA

ctivation of unexpected faces and FFA activation for unexpected faces).

http://www.fil.ion.ucl.ac.uk/spm
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Fig. 2. Behavioural measures. (A) Mean response times for expected and unexpected trials and (B) mean percentage of correct responses. Black horizontal lines 

represent the mean values, boxes represent the standard error of the mean ( SEM ), and grey vertical lines represent the standard deviation ( SD ). The grey circles 

represent individual data points of the 33 participants. 

Fig. 3. Region of interest (ROI) fMRI data. (A) Right FFA and right PPA ROIs used for beta value extraction. (B) Mean group activation estimates ( 𝛽 parameters + / − 
SEM) for expected_preferred, expected_non-preferred, unexpected_preferred, and unexpected_non-preferred trials. 
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A three-way repeated measures ANOVA was run on a sample of 33

articipants to examine the effect of expectation, preference, and ROI

n the extracted beta values. There was no significant main effect of

xpectation showing that there was no general prediction error effect

or both positive and negative surprises ( F (1,32) = 0.183, p = 0.672).

owever, the effect of expectation was dependent on whether the

resented image was a region’s preferred or non-preferred stimulus

s revealed by a significant two-way interaction between preference

nd expectation ( F (1,32) = 149.54, p < 0.001) (See Fig. 3 ). This inter-

ction effect, however, was independent of the two ROIs as the re-

ults yielded no significant three-way interaction between the factors

OI, preference, and expectation ( F (1,32) = 0.02, p = 0.901). The re-

ults of the post-hoc contrasts revealed a significant difference between

he conditions expected_preferred and unexpected_preferred as on av-

rage, expected_preferred stimuli evoked larger beta values as unex-

ected_preferred stimuli ( t (32) = 5.31, p < 0.001). On the other hand,
5 
he comparison between expected_non-preferred and unexpected_non-

referred trials yielded a significant difference resulting from higher

eta values for unexpected_non-preferred trials ( t (32) = − 5.44, p <

.001). With regard to our hypotheses, the results show no general pre-

iction error effect of both positive and negative surprises as revealed by

he non-significant main effect of expectation. Moreover, the prediction

rror effect that was expected to result from unexpected as compared to

xpected trials seemed to be dependent on whether the presented stim-

lus was preferred or non-preferred to our ROIs. The results revealed

n increase for unexpected as compared to expected trials only within

 stimulus’ non-preferred region which represents a negative prediction

rror effect in our study. As opposed to that, the univariate analysis did

ot show significant positive prediction error effect, as on average, beta

alues for expected trials as compared to unexpected trials were higher

n the preferred condition. A detailed overview of all main effects and

nteractions can be found in the Supplementary material. 
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Fig. 4. Results of PPI analyses for the right IFG 

as seed region on the right FFA for FU > FE (in 

red) and on the right PPA for PU > PE (in blue). 

For display purposes, the activation identified 

by the PPI in the respective ROIs (FFA, PPA) is 

shown at p < 0.005 ( uncorrected ). Significance 

of the activation in the two ROIs is tested us- 

ing SVC at p < 0.05, FDR [SVC]-corrected (see 

Table 1 ). 

Table 1 

PPI analyses of the right IFG. After small volume correction, the results were 

FDR corrected at p < 0.05 voxel level. Cluster extent ( k ) is indicated in voxels. 

MNI, Montreal Neurological Institute. 

Region k t -value of 

peak voxel 

MNI coordinates 

x y z 

FU > FE 

Right fusiform gyrus 17 3.26 45 − 52 − 19 

PU > PE 

Right parahippocampal place area 41 4.33 30 − 58 − 16 
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To further investigate the principles of positive and negative predic-

ion error effects, we implemented two PPI analyses, where we exam-

ned whether the right IFG was coupled with negative and positive pre-

iction error signals during unexpected faces and places when compared

o expected faces and places, respectively. After using small volume cor-

ection for our predefined ROIs and a threshold of p < 0.05 (FDR) at

oxel level, results demonstrated that for unexpected faces when com-

ared to expected faces, the right IFG showed context-dependent con-

ectivity with the right FFA. Correspondingly, for unexpected places

s compared to expected places, the right IFG was significantly cou-

led with activation in the right PPA, corroborating the IFG’s stimulus-

pecific engagement in processing positive prediction error signals for

nexpected stimuli. See Fig. 4 and Table 1 for an overview of the PPI

esults. 

. Discussion 

The current fMRI study investigated co-occurring positive and neg-

tive prediction error signals resulting from expectation violations of

earned cross-category stimulus-stimulus transitions. We examined the

OLD response evoked by the unexpected omission of one stimulus cat-

gory (e.g., a face) and the simultaneous unexpected presentation of

he other stimulus category (e.g., a place). The results of our univariate

nalysis provide evidence for negative prediction error signals as seen

n increased brain activation evoked by unexpected and non-preferred

timuli (e.g., PPA activation during unexpected faces). However, we did

ot find a positive prediction error effect as the ROI analysis revealed

 significant activation increase in expected preferred as compared to

nexpected non-preferred stimuli (e.g., FFA activation increase for ex-

ected faces when compared to unexpected faces). This finding seems to

e more in line with previous literature on prediction enhancement ef-

ects. Nevertheless, we found evidence for positive prediction error sig-
6 
alling in our PPI analyses. Here, the results suggest context-dependent

unctional coupling during unexpected faces as compared to expected

aces between the right inferior frontal gyrus (IFG) and right FFA as

ell as coupling between right IFG and right PPA during unexpected

laces compared to expected places. This implicates a network that up-

ates the internal model after the appearance of an unexpected stimulus

hrough involvement of the right IFG. In the following, we will discuss

hese findings in more detail. 

Behavioural results confirmed that participants learned the given

robability distribution of stimulus transitions. Thus, stimuli match-

ng the expected transition probabilities were categorised quicker

nd more often correctly than non-matching stimuli; hence, reflecting

he hypothesised facilitation effect resulting from predictive processes

 Esterman and Yantis, 2010 ; Turk-Browne et al., 2010 ). As hypothe-

ised, corresponding effects of predictive processing were also reflected

n stimulus- and region-specific neural activation patterns. Specifically,

he omission of expected stimuli lead to an increased hemodynamic re-

ponse in the unexpected stimulus’ non-preferred brain region, reflect-

ng a negative prediction error ( Egner et al., 2010 ). Negative predic-

ion error signals have mainly been investigated in so-called omission

aradigms where the expected stimulus is withheld but a robust cortical

esponse in the relevant cortical area can still be measured ( den Ouden

t al., 2012 ; Fiser et al., 2016 ; Kok et al., 2013 ). The present results ex-

end these findings by showing that the omission of an expected stimulus

hat is replaced by an unexpected stimulus results in a similar negative

rediction error signal as found in omission paradigms. Thus, it seems

hat omission responses do not depend on a stimulus-free period during

hich the specific stimulus was expected, but rather on the experience

hat an expected stimulus does not appear. 

As opposed to our hypothesis, we did not find a significant posi-

ive prediction error effect in our univariate analysis. Instead, we found

ignificantly larger responses for expected preferred when compared to

nexpected preferred stimuli representing a profound expectation en-

ancement effect. This finding stands in contrast with studies report-

ng a stimulus-specific BOLD decrease for expected compared to un-

xpected stimuli ( Egner et al., 2010 ; Meyer and Olson, 2011 ). It has

een suggested that top-down expectation of stimulus (feature) rep-

titions reduces the prediction error, which in turn results in a re-

uced BOLD response in the relevant areas, also called fMRI adaptation

 Grill-Spector et al., 2006 ; Krekelberg et al., 2006 ; Miller et al., 1991 ;

egaert et al., 2013 ). 

A possible explanation for the prediction enhancement we found

ight, however, be derived from recent “sharpening ” models of pre-

iction ( Press and Yon, 2019 ; Press et al., 2020 ). These suggest that
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xpectations generate increased activation of predicted sensory units

nd a relative suppression of unexpected ones. In the context of this

aradigm, these models might provide a mechanistic explanation for

he positive prediction enhancement effect. If for example the observer

xpects a stimulus of a certain category (e.g., a face), this expectation

enerally pre-activates units tuned to these stimuli (i.e., pre-activating

FA, thereby suppressing PPA). This pre-activation would lead to the

bserved prediction enhancement effect. Additionally, studies that used

xpectation omission designs (e.g., Kok et al., 2014 ), might explain the

egative prediction error effect we found in the current study. If we as-

ume that expectations pre-activate neuronal templates of the predicted

timulus, a negative prediction error signal, as found in this study, might

esult from the pre-activated sensory units. 

Nevertheless, there is an important difference between previous ex-

ectation omission designs and the current study design. Traditional

mission designs simply withhold an expected stimulus and do not re-

lace it with another (unexpected) stimulus ( Kok et al., 2014 ; den Ouden

t al., 2012 ). Therefore, omission studies are only able to investigate re-

ponses to expected stimuli on the one hand and unexpectedly omitted

timuli that might result in negative prediction errors on the other hand.

herefore, sharpening models do not explain the positive prediction er-

or effect that we found in the context of the PPI analysis. 

Another possible explanation for the prediction enhancement would

e that the particular transition probabilities gave rise to enhanced

timulus-specific activations during expected trials as suggested by pre-

ious findings ( den Ouden et al., 2012 ; Keller and Mrsic-Flogel, 2018 ).

n the current study, the most likely stimulus transition was a change

n stimulus category (i.e., face-place; place-face). In line with predic-

ive coding models in cognitive neuroscience ( Friston et al., 2005 ;

eller et al., 2018 ), the unequal stimulus category transitions might

ave triggered low-level positive prediction errors during expected tri-

ls. These models assume that representation units encode the brain’s

urrent hypothesis about the outside world (e.g., “I am looking at a face

ow ”) independent of expectations about the future or the present. Fur-

hermore, prediction error neurons in this framework can be understood

s simple input units that signal incoming information from lower lev-

ls. In the context of unequal stimulus category transitions, this means

hat when a place appears after the observer looked at a face, the acti-

ation of prediction error neurons (that are tuned to places) lead to an

djustment in the representation neurons. 

As a consequence, the constant category switches and correspond-

ng low-level prediction errors, might have drawn upon attentional

esources thereby increasing activation in the stimulus-specific ar-

as ( Blondin and Lepage, 2005 ; Chen et al., 2012 ; Maunsell and

reue, 2006 ; Posner et al., 1980 ). Even though the motivational con-

iderations that guide attention are principally orthogonal to visual ex-

ectations (guided by perceptual regularities), expectation and attention

ften coincide and interact ( Summerfield and Egner, 2009 ). 

In future studies, it would be of interest to explicitly address the in-

erplay of low-level prediction errors and expectation effects and to fur-

her investigate, under which circumstances expectation leads to fMRI

uppression or prediction enhancement. 

During the PPI analyses, we examined whether activation in the right

FG was directly associated with positive and/or negative prediction er-

or signals. From a hierarchical perspective, it has been suggested that

ensory input not accounted for by impending predictions is carried from

nferior to superior levels ( Alexander and Brown, 2018 ). Our PPI results

upport this claim by demonstrating increased functional coupling of

he right IFG with those stimulus-specific areas showing a positive pre-

iction error. Given our clear a priori hypothesis for activity in both

PA and FFA, we consider the FDR correction to be appropriate and,

herefore do not expect FFA activity to reflect false positive activation. 

Thus, we found positive coupling of the seed region with right FFA

or unexpected faces as well as significant functional coupling of the

eed region with the right PPA for unexpected places. We take this find-

ng to reflect that the right IFG receives information from lower level
7 
reas, leading to a subsequent revision of the current internal model

 Chao et al., 2018 ; Trempler et al., 2020 ). Former studies found ac-

ivity in the IFG not only on occasions of expectation violation ( El-

ourani et al., 2019 ) but more generally upon presentation of important

ues ( Hampshire et al., 2010 , 2009 ) reflecting the costs of processing

his information ( Alexander and Brown, 2018 ; El-Sourani et al., 2019 ;

eller and Mrsic-Flogel, 2018 ). Building on these suggestions, our find-

ngs indicate that positive prediction errors, even when not significantly

ronounced on the univariate level, play an important role during pre-

ictive processes and significantly influence the hierarchical processes

o keep our internal models updated. 

Notably, we found IFG coupling with positive prediction error sig-

als but not for negative ones, implying that unpredicted appearances

re driving the coupling with the right IFG but omissions do not. This

icely corroborates previous findings suggesting the IFG to co-vary with

he impact that a stimulus has for updating the predictive model ( El-

ourani et al., 2019 ). It is plausible to assume that the non-occurrence

f an expected stimulus is in many cases not as informative as the occur-

ence of an unexpected stimulus: the latter determines the state of the

nvironment whereas the former does only exclude one possible state

f the environment. 

Taken together, we observed a negative prediction error for the ab-

ent expected stimulus as revealed by the univariate ROI analysis, ev-

dence for a positive prediction error for the present unexpected stim-

lus as implicated by the PPI analyses, and a prediction enhancement

ffect for expected stimuli. These different analyses and corresponding

ndings suggest that the error computations in the brain might be car-

ied out by separate prediction error circuits, that process prediction

rror signals via different mechanisms ( Keller and Mrsic-Flogel, 2018 ;

ao and Ballard, 1999 ). This assumption may be further supported by

he asymmetric engagement of IFG-PPA and IFG-FFA coupling for pos-

tive but not negative prediction errors (as outlined above). While pre-

ious studies investigated either positive or negative prediction error

ignals, we obtained evidence that both can occur at the same time.

ue to the limited temporal resolution of fMRI, however, we cannot

learly distinguish between predictive processes and processes purely

esulting from prediction errors ( Kok et al., 2013 ). Therefore, in future,

t would be valuable to investigate the temporal progression from the

mergence of expectations and expectation violation using for example

lectroencephalography. 

Overall, the present study provides evidence that positive and nega-

ive prediction errors modify our current internal representations to best

pproximate and predict our ever-changing environment. Moreover, the

unctional connectivity between positive prediction error signals and the

ight IFG suggests the crucial involvement of higher-level prefrontal re-

ions during the revision of the current internal model, especially with

egard to stimuli defining the present environmental state rather than

roviding evidence for non-states. These results give new insights into

rediction error processing while taking into account the dual nature

f expectation violations that involve the unexpected appearance of a

timulus that can be inevitable connected to the unexpected omission of

nother stimulus. 
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